
Writing Assembler Filters
for Use with

CMS Pipelines

John P. Hartmann

IBM Danmark A/S
Nymøllevej 85

DK-2800 Lyngby, Danmark
.jh (from VMSHARE)

john@vnet.ibm.com (from Internet)
JOHN at VNET (from BITNET)

DKIBMJPH (from IBM Mail)

SHARE 84
Sessions 2610 and 2611

Wednesday March First 1995

Abstract

CMS Pipelines implements the dataflow model of programming. It passes records through programs in a
multistream topology. This allows for selective processing of records based on their contents, or based on
the previous history of input data.

Though CMS Pipelines contains a diverse set of built-in filters from which the pipeline programmer can con-
struct applications, custom filters must be written from time to time. The language of choice for such filters
is REXX, but when large amounts of data are to flow through the filter, the programmer may be forced to
look at writing the filter in Assembler. This paper explains how.

This paper contains:

An overview of the mechanics of writing a filter package for use with CMS Pipelines.

A cookbook showing five selected simple, but non-trivial, ready-to-use Assembler filters.

Notes, gotchas, and other items of information that may be useful to the prospective Assembler filter
programmer.

 Copyright 1995 IBM Danmark A/S. Permission is granted to SHARE Inc. to publish an exact copy of this paper in the SHARE
Inc. proceedings. IBM retains the title to the copyright in this paper as well as the title to the copyright to all underlying work. IBM
retains the right to make derivative works and to publish and distribute this paper to whomever it chooses in any way it chooses.

Disclaimers: This material may contain reference to, or information about, IBM products that are not announced in all countries in
which IBM operates; this should not be construed to mean that IBM intends to announce these product(s) in your country. This
material may contain description of interfaces that are not designated as Programming Interfaces for Customers; refer to the appro-
priate documentation for the description of such interfaces. Trademarks: OpenEdition and VM/ESA are registered trademarks of
International Business Machines Corp.

2 Writing Assembler Filters with CMS Pipelines

Overview
A filter is a program that processes data, which it reads from the pipeline, to produce
results, which it writes back into the pipeline.

To write an Assembler filter, you must obviously write the actual code to perform
the function that you wish to accomplish. It is possible to run a filter directly out of
the object module that the Assembler produces, but it is more user friendly to
package Assembler filters into a filter package. This lets you manage many filters as
a single module file. Thus, to be able e ectively to write CMS Pipelines filters in
Assembler, you must also understand about filter packages.

A filter package is a special type of module, which is installed in storage as a nucleus
extension and which attaches itself to the main pipeline module as a logical extension
to the contents of CMS Pipelines.

A filter package contains:

The programs that implement the filters.

An entry point table, through which CMS Pipelines is able to resolve the filters in
the package.

A glue module, which attaches the filter package’s entry point table to the CMS
Pipelines search order.

To create an object module that can be included in a filter package, the program
must first be processed in some language-dependent way:

Assembler programs are processed by Assembler H or the High-level Assembler
to generate a normal object module.

REXX programs can be compiled by the REXX compiler using the OBJECT

option to produce an object module.

REXX programs can also be processed by a CMS Pipelines utility, which gener-
ates an object module that contains the program in a form that can be passed to
the interpreter. Optionally, comments and redundant blanks can be removed
when creating such an object module. It is, however, important to remember
that even though the REXX program is stored in an object module, it is still
interpreted when it is run.

Some “magic” module names are defined, for which CMS Pipelines automatically
attaches the filter package when it initialises itself. Other modules must be attached
by invoking them as a CMS command.

How to Write the Assembler Program
CMS Pipelines provides the filter with a complete operating environment where most
issues have already been dealt with:

Working storage is allocated by CMS Pipelines; the filter is inherently re-entrant.

Arguments are easily scanned using the CMS Pipelines services for parameter
scanning and verification.

Data are easily read and written using CMS Pipelines’s dispatcher services.

Bu ers are managed by CMS Pipelines; there is usually no need to perform one’s
own storage management.

1

Structured programming is encouraged by a set of macros that implements the
standard IF-THEN-ELSE, looping, and multiway selection functions.

It is, of course, entirely your choice whether you will wish to take advantage of these
macros, in particular since many of them are not formally documented by IBM.
You may wish to make do without the macros that implement structured program-
ming, particularly if the macros do not suit your tastes. But not using the automatic
storage management that CMS Pipelines o ers may mean that the mechanics of the
program becomes much more di cult to handle.

The Contents of an Assembler Filter
An Assembler program that contains a CMS Pipelines filter consists of three parts:

The front matter, which sets up required global symbols and identifies the source
module.

One or more procedures, which implement the logic of the filter(s).

The back matter, which makes up the end of the file.

The front matter and the back matter require four macros in total. They are prob-
ably best thought of as black boxes, which can easily be generated by an XEDIT

macro.

The Listing File—PRINT NOGEN
The listing file produced when assembling a CMS Pipelines program is intended to be
processed by a post processor, which is shipped in source form in DMSPPP. This
post processor does not support the listing format used by the High-level Assembler;
you may be better o suppressing the generated instructions with PRINT NOGEN.

Example 1, Truncate after 20 Bytes
This section walks through a filter that truncates records after twenty bytes of input.
Because it writes an unmodified subset of its input records, the filter does not need to
bu er the record; that is, it need not read the record into a private area of storage.
Thus, the example in Figure 1 on page 3 is one of the simplest possible non-trivial
filters. The filter is shown in its entirety below; the following sections describe each
statement.

2 Writing Assembler Filters with CMS Pipelines

*
* Front matter
*
COPY DMSPIPID Get component ID

FLTPKG MODBEG FREETYPE=NONE,CNOTE=NO
DMSPDEFS VECTOR=R9

*
* Procedure containing filter code
*
CHOP20 PROC DCL=NO,SAREA=STACK,ENTRY=NO
REPEAT , Begin main loop

PIPLOCX , Peek at the next record
C R0,=F'20' Too long
COND HIGH,LA,R0,20 Truncate if so
PIPOUTX , Write output record
PIPINPUT (,0) Consume input record

UNTIL NOTZERO
PEXIT RC=(R15)

&MODULE.C2 PIPDESC FP=NO,ARGS=NO,STREAMS=1,STOPABLE=YES
PROCEND ,

*
* Back matter
*
MODEND ,

Figure 1. Truncate after 20 Characters

The Front Matter

COPY DMSPIPID Get component ID

This line copies a few global variables into the open code. The variables are used by
subsequent macros. They must be set for successful assembly; thus, this statement
must be the first non-comment statement in a module.

FLTPKG MODBEG FREETYPE=NONE,CNOTE=NO

This macro defines the beginning of the module proper. The label field specifies the
name of the module’s control section. The first keyword operand specifies that
storage is managed by CMS Pipelines. The second operand suppresses an IBM
copyright notice, which would otherwise be generated.

The macro generates the START assembler instruction as well as an eye-catcher that
shows the module name and the time of assembly.

DMSPDEFS VECTOR=R9

This macro instruction specifies that the program will keep the address of the pipeline
services transfer vector (PSTV) in general register 9. The PSTV is provided by the pipe-

3

line dispatcher in general register 9 when the stage is started. It contains the entry
point addresses for the CMS Pipelines service routines.

In addition DMSPDEFS generates many equates, in particular, the ones usually
employed for the general registers.

The Procedure
In general, a procedure contains three parts:

The procedure work area. An instance of the work area is allocated when the
procedure is entered; it is de-allocated when control returns from the procedure.
That is, each invocation of the stage has its own private procedure work area.

The procedure body. The programmer writes the executable code for the proce-
dure body. CMS Pipelines generates appropriate prologue and epilogue to save
and restore registers; it also generates code in the prologue to initialise variables
in the procedure work area. The procedure body is re-entrant and is shared by
all invocations of the filter; it can even be in a shared segment.

The static constants area. This area contains read-only constants and machine
instructions that are the subject of the EXECUTE instruction. The most notable
item in the static area is the program descriptor, which is a control block that
describes the stage to CMS Pipelines. The static area also contains the constants
that might be required to initialise the procedure work area; these are generated
automatically by CMS Pipelines. There is one copy of the static area for all
invocations of the stage; it is an appendage to the procedure body.

The three parts are delimited by four macros, as shown in Figure 2:

NAME PROC ,
* Procedure work area
PBEGIN ,

* Procedure body
PEXIT ,

* Static constants
PROCEND ,

Figure 2. Structure of a Procedure

The procedure work area can be elided, as can the static constants area. An outer
procedure can have more than one procedure body.

CHOP80 PROC DCL=NO,SAREA=STACK,ENTRY=NO

The PROC macro declares the beginning of a procedure. The label field contains the
name of the procedure.

Normally, the PROC macro would be followed by the procedure work area, but in
this case, the work area is suppressed by the operand D C L = N O .

The following operand (SAREA=STACK) must be specified this way for CMS
Pipelines filters that are defined by a program descriptor, as this filter is. It means
that the address of a work area is provided in general register 1 by the caller, which is
the CMS Pipelines dispatcher.

4 Writing Assembler Filters with CMS Pipelines

The last operand (E N T R Y = N O) suppresses an external entry point for the procedure.
No entry is generated, because the procedure is referenced from the program
descriptor, which is an external entry point.

REPEAT , Begin main loop

The REPEAT macro marks the beginning of the main loop for the filter. It is paired
with an UNTIL macro, which closes the loop. Control comes back here for each
record to be processed.

PIPLOCX , Peek at the next record

The PIPLOCX macro calls the CMS Pipelines dispatcher to get a peek at the next
input record without consuming it. (PIPLOCX performs the same function as the
pipeline command PEEKTO in a REXX filter.) General register 1 is set to the
address of the record and general register 0 is set to the length of the record.

PIPLOCX contains a PIPLOCAT macro, which has been augmented by testing of the
return code. If the return code is negative, PIPLOCX exits with the return code it
received from CMS Pipelines; this would indicate a stalled pipeline. The pipeline dis-
patcher sets return code 12 at end-of-file. PIPLOCX then goes directly to the proce-
dure exit with return code 0, because no error was found.

You can do that in this case, because no additional processing is required after end-
of-file is met. In particular, no files need be closed and no resources need to be de-
allocated.

C R0,=F'20' Too long

Test if the input record is too long.

COND HIGH,LA,R0,20 Truncate if so

Truncate the record if it is longer than twenty bytes.

PIPOUTX , Write output record

Write the possibly truncated record to the output. (PIPOUTX performs the same
function as the OUTPUT pipeline command in a REXX filter.)

When it is written without operands, PIPOUTX expects the address of the record to be
in general register 1 and its length to be in general register 0. In this example the
address and length are unchanged from the PIPLOCX macro that set them, unless the
record was truncated.

PIPOUTX issues the PIPOUTP macro and tests the return code in the same way that
PIPLOCX does. This allows end-of-file to propagate backwards.

5

PIPINPUT (,0) Consume input record

PIPINPUT reads and consumes a record from the input stream in the same way that
the READTO pipeline command consumes an input record in a REXX filter.

The second sub-operand specifies that the read bu er contains zero bytes. Per-
forming a zero-length read is the idiomatic way to consume an input record that has
been peeked at. Of course, the record should not be consumed before the derivative
output record has been written.

This program does not delay the record, because it uses a peek/output/read cycle.

UNTIL NOTZERO

Return to the REPEAT macro unless the return code on the consuming read is non-
zero. A non-zero return code on a consuming read is an “impossibility”.

PEXIT RC=(R15)

Return to the pipeline dispatcher at end-of-file. The return code is already in general
register 15.

&MODULE.C2 PIPDESC FP=NO,ARGS=NO,STREAM=1,STOPABLE=YES

This macro generates the program descriptor for the filter. The label is FLTPKGC2,
because the &MODULE. variable is set by MODBEG.

The keyword operands specify:

That the filter does not use the floating point registers; thus, they do not need to
be saved and restored. (F P = N O) There is a significant performance gain by speci-
fying F P = N O ; so much that it is the default for the PIPDESC macro.

That no arguments are allowed. CMS Pipelines infrastructure will reject an invo-
cation that specifies a non-blank argument string. (A R G S = N O)

That only one stream is allowed. CMS Pipelines infrastructure will reject an
invocation that has a secondary set of streams defined. (STREAMS=1)

That the stage is summarily stopable. This authorises the CMS Pipelines dis-
patcher to terminate the stage when it has determined that the input or the
output is at end-of-file. (STOPABLE=YES)

The placement of the program descriptor defines the procedure body to run; put the
program descriptor in the static area of the procedure that performs the filter’s func-
tion.

PROCEND ,

The end of the procedure.

6 Writing Assembler Filters with CMS Pipelines

The Back Matter

MODEND ,

The end of the module. Do not use an END card; one has already been generated.

Assembling and Testing a Filter
Use the standard CMS macro libraries when you assemble the filter:

global maclib dmsgpi dmsom
hasm fltpkg
load fltpkg
pipe literal a line|ldrtbls fltpkgc2|console

To test the filter right out of the object module without first generating a filter
package, you LOAD the object module and use ldrtbls to resolve it via the CMS
loader tables.

Example 2, Coerce to 20 Bytes
The example in Figure 1 on page 3 serves as a convenient base to develop a filter
that coerces the input record into a fixed format. In this example, the record length
is fixed at twenty bytes. Longer input records are truncated and shorter ones are
padded with asterisks.

Only the procedure is shown, because it is inserted after the procedure in the module
shown in Figure 1 on page 3.

COERCE20 PROC SAREA=STACK,ENTRY=NO
COERCE_REC DS CL20
PBEGIN ,
REPEAT , Begin main loop

PIPLOCX , Peek at the next record
C R0,=F'20' Too long
IF LOW

LA R14,COERCE_REC Get buffer
LA R15,L'COERCE_REC ... and length
LR R4,R1 Get record
LR R5,R0
ICM R5,8,=C'*' Pad with stars
MVCL R14,R4 Load record
LA R1,COERCE_REC Address output record

FI ,
LA R0,20 Load fixed length
PIPOUTX , Write output record
PIPINPUT (,0) Consume input record

UNTIL NOTZERO
PEXIT RC=(R15)

&MODULE.F2 PIPDESC FP=NO,ARGS=NO,STREAMS=1,STOPABLE=YES
PROCEND ,

Figure 3. Coercing the Record

7

The di erences from the previous example are:

A procedure work area is allocated to contain the output record in the area that
has the label COERCE_REC. This is needed, because the record can potentially be
modified; a filter is not allowed to modify the producer’s record. That is, the
filter should not modify the record that it has peeked, because it is still in the
producer’s bu er. This cannot be enforced; nor can non-conformance be
detected.

If the record is shorter than twenty bytes, the contents of the input record are
loaded into the bu er and padded with asterisks. Note that the output record is
known to be shorter than 16M (it is twenty bytes); in general, you must be very
careful to handle records that are longer than 16M.

The output record is always twenty bytes.

Though the example looks obvious, you should take a while to look at this statement
from the work area:

COERCE_REC DS CL20

This reserves a twenty-byte area in the procedure work area for use as a record bu er.
It looks deceptively like a Define Symbol Assembler instruction, but CMS Pipelines
has done one of its magic and mirrors tricks here; the DS instruction has been
replaced by a macro through the mechanism known as OPSYN.

Thus, CMS Pipelines is able to save the value of constants that are defined in the
procedure work area, had there been any, in the static section so that the prologue
can initialise the variables in any particular instance of the work area. This is clearly
a productivity booster, because you do not have to code the constants twice. But
there are a few caveats:

If possible, use only DC and DS instructions in the work area, or macros that
expand to such instructions.

ORG and other Assembler instructions are not recommended, but if you must use
them, surround them by DS instructions for zero-length fields. This defeats the
optimising step that tries to initialise several DCs in one move instruction.

Do not use machine instructions in the work area; they will not be initialised. If
you need to modify a program dynamically, move a static prototype into the
work area yourself.

Example 3, Truncate at Specified Length
The next example shows a variation on Figure 1 on page 3 to allow the maximum
record length to be specified as an argument; a default is used when the argument
string is blank.

This example is, by far, the most complicated of the examples in this paper. It shows
how to specify a syntax exit for the filter. The syntax exit is called by the CMS
Pipelines scanner after it has resolved the filter, but before the pipeline is started. In
this example, the syntax exit stores the value of the argument into the work area,
where it can be used by the main loop.

The procedure in Figure 4 on page 9 contains two procedure bodies. CMS Pipelines
calls them with the same work area address in register 1 and it does not disturb the

8 Writing Assembler Filters with CMS Pipelines

work area between the two calls. Thus, the syntax exit can leave a value for the main
filter to use.

CHOPVAR PROC SAREA=STACK,ENTRY=NO
CHOPVAR_LENGTH DS F To hold the length
PBEGIN EP=CHOPVAR_SYNTAX,ENTRY=NO
PIPWORD , Scan a word
IF ZERO Nothing there.

LA R0,15 Take a default
ELSE ,

PIPDECWD , Convert to decimal
PIPERM 58,EXIT,COND=NOTZERO Trouble converting?
LTR R0,R0 Must be positive
PIPERM 66,EXIT,COND=NOTPOSITIVE

FI ,
ST R0,CHOPVAR_LENGTH Save for main procedure
PEXIT RC=(R15),REGS=(R2,R3)

*
PBEGIN EP=CHOPVAR_GO,ENTRY=NO,INITWA=NO
REPEAT , Begin main loop

PIPLOCX , Peek at the next record
C R0,CHOPVAR_LENGTH Too long
COND HIGH,L,R0,CHOPVAR_LENGTH Truncate if so
PIPOUTX , Write output record
PIPINPUT (,0) Consume input record

UNTIL NOTZERO
PEXIT RC=(R15)

&MODULE.CV PIPDESC FP=NO,STREAMS=1,STOPABLE=YES, *
SYNTROUT=CHOPVAR_SYNTAX, *
SYNTAX=(CALLSYNT,DONE)

PROCEND ,

Figure 4. Truncating at a Specified Length

The main procedure body (the second procedure body) is almost identical to the one
in the first example; it will not be discussed further. Defining the procedure work
area is covered in the second example.

The point of this example is to show the use of a syntax exit.

PBEGIN EP=CHOPVAR_SYNTAX,ENTRY=NO

The PBEGIN macro has two new operands, because the procedure has more than one
procedure body. Because the name of the procedure is not su cient to specify the
individual procedure bodies, the E P = operand is used to specify the name of the par-
ticular procedure body. E N T R Y = N O specifies that no external entry is needed,
because the syntax exit is specified in the program descriptor.

PIPWORD , Scan a word

When the syntax exit is entered, the general registers contains various pointers and
numbers. In particular, general register 2 points to the beginning of the argument
string and general register 3 contains the count of characters in this string. General
register 9 contains the address of the pipeline services transfer vector.

9

The macro PIPWORD calls a scanning routine that separates the first blank-delimited
word from the head of the string defined by the contents of registers 2 and 3. The
address of the word is returned in general register 4 and the length of the word is
returned in general register 5. Registers 2 and 3 are adjusted to describe the
remaining argument string.

IF ZERO Nothing there.
LA R0,15 Take a default

PIPWORD sets the return code to the number of characters in the word just scanned.
Thus, if the return code is zero, the argument string contained only blanks and a
default record length is loaded into register 0.

ELSE ,
PIPDECWD , Convert to decimal
PIPERM 58,EXIT,COND=NOTZERO Trouble converting?
LTR R0,R0 Must be positive
PIPERM 66,EXIT,COND=NOTPOSITIVE

A blank-delimited word was found. Use PIPDECWD to convert it from decimal to
binary. PIPDECWD requires the address of the input word to convert in register 4 and
the length in general register 5. It is of course no coincidence that PIPWORD left
those values there.

PIPDECWD returns the binary value of the word in general register 0. It sets the
return code to zero if the word contains a signed number that can be represented in
binary in 32 bits two’s complement notation. It sets a non-zero return code other-
wise.

If the return code from PIPDECWD is non-zero, message 58 is issued to diagnose this
problem and the syntax exit terminates with a non-zero return code.

But not all valid signed numbers are useful as record lengths. It is a matter of taste
whether one should accept zero as a valid record length or not; in this example, zero
and negative record lengths are rejected with message 66.

ST R0,CHOPVAR_LENGTH Save for main procedure

Store the default value or the specified value into the work area.

PEXIT RC=(R15),REGS=(R2,R3)

Return to the CMS Pipelines scanner. The unscanned argument string must be
returned. REGS=(R2,R3) specifies that the range of registers from 2 to 3 should not be
restored from the save area; instead they should be passed back unmodified. (Actu-
ally, the epilogue stores the contents of registers into the save area so that the
modified values are returned, but that clearly amounts to the same thing.)

10 Writing Assembler Filters with CMS Pipelines

The scanner will issue an error message if the unscanned argument string is not
blank; you need not worry about small details like this. But you must worry about
returning the registers to the scanner.

PBEGIN EP=CHOPVAR_GO,ENTRY=NO,INITWA=NO

Because the procedure has two bodies, you must supply a unique name for each.
This procedure body is also addressed from the program descriptor; no entry point
need be generated. I N I T W A = N O is not important in this example, because there are
no constants to be initialised in the work area. Still, it is a good habit to specify
I N I T W A = N O.

&MODULE.CV PIPDESC FP=NO,STREAMS=1,STOPABLE=YES, *
SYNTROUT=CHOPVAR_SYNTAX, *
SYNTAX=(CALLSYNT,DONE)

Finally, the program descriptor has been modified to specify the location of the
syntax exit (S Y N T R O U T =) and to specify that it should be called (S Y N T A X =).

The S Y N T A X = operand supports a contorted and rich set of operations, which are
not documented formally. You will be well advised to stay clear of it, except for a
few simple cases like the one shown here. CALLSYNT tells the scanner to go call your
exit; DONE says that you are done scanning the argument string.

Example 4, Truncate at Specified Length, Di erently
The previous example was included to highlight the use of a syntax exit. If you study
the CMS Pipelines source code, you will see that its function could be accomplished
by a syntax program. No doubt, you appreciate the compactness of the procedure in
Figure 5.

CHOPVARS PROC DCL=NO,SAREA=STACK,ENTRY=NO
REPEAT , Begin main loop

PIPLOCX , Peek at the next record
LRMIN R0,R8 Truncate if needed
PIPOUTX , Write output record
PIPINPUT (,0) Consume input record

UNTIL NOTZERO
PEXIT RC=(R15)

&MODULE.CS PIPDESC FP=NO,STREAMS=1,STOPABLE=YES, *
SYNTAX=(WORD, *
?Z,(:0,15), *
(DECWD,?NZ58,0TO15,?NP66), *
=0,8,DONE)

PROCEND ,

Figure 5. Scanning a Number in a Syntax Program

The procedure body is almost identical to the one in the first example. The
S Y N T A X = operand is the one needing scrutiny.

11

The syntax program is specified as suboperands of the S Y N T A X = keyword (or as
positional operands on a separate #SYNTAX macro instruction). The program above
performs the same function as the exit program in the previous example:

A call to the service routine PIPWORD. “PIP” is omitted when calling a pipeline
service routine in the syntax program.

The question mark operation tests the contents of general register 15 and then
evaluates one of the two following sublists. The “Z” specifies to test for zero.
Thus, the first sublist is evaluated if register 15 is zero (that is, there are no argu-
ments); the second sublist is evaluated if the contents of register 15 are not zero
(there is an argument).

When there are no arguments:

− The colon operation loads a general register. The number after the colon is
the number of the register.

− The constant to load is specified in the next operand. This can be any con-
stant that can be stored in a four-byte address constant.

− The program skips the next sublist.

When there is an argument:

− PIPDECWD is called to convert the number to binary.

− Issue message 58 if the word could not be converted.

− 0TO15 loads the contents of general register 0 into register 15 for testing.

− Issue message 66 if the number is not positive.

The equal sign operator stores the contents of a general register into the stage’s
initial register set so that the value will be pre-loaded when the main procedure is
called. The number of the register is specified after the equal sign.

The number of the receiving register is specified in the next sub-operand. In this
example, the argument is stored into general register 8.

DONE specifies that the syntax program should terminate. The scanner ensures
that only blanks remain in the unscanned argument string.

Example 5, Coerce at Specified Length
This example highlights the bu er handling features of CMS Pipelines. You need a
bu er to handle records of arbitrary lengths. And the length will be arbitrary if you
allow it to be specified as an argument. It may even be larger than the dreaded 16M.
You need not worry; CMS Pipelines copes.

12 Writing Assembler Filters with CMS Pipelines

COERCEVAR PROC SAREA=STACK,ENTRY=NO
CVBUF PIPBFR 512 A small buffer
PBEGIN ,
PIPIBFR CVBUF Ready buffer
REPEAT , Begin main loop

PIPLOCX , Peek at the next record
CR R0,R8 What's the score?
IF LOW

PIPBFRLD CVBUF,((R1),(R0)),EXIT=NOTZERO
SR R5,R8 Figure how much to pad (negative *

of)
LPR R5,R5 Make number of bytes
LA R4,256+C'*' Get pad
LNR R4,R4 Indicate pad
PIPBFRAP CVBUF,EXIT=NOTZERO
PIPBFRSU CVBUF Prepare to write

FI ,
PIPOUTX (,(R8)) Write output record
PIPINPUT (,0) Consume input record

UNTIL NOTZERO
PEXIT RC=(R15)

&MODULE.FV PIPDESC FP=NO,STREAMS=1,STOPABLE=YES, *
BUFFER=CVBUF, *
SYNTAX=(WORD, *
?Z,(:0,15), *
(DECWD,?NZ58,0TO15,?NP66), *
=0,8,DONE)

PROCEND ,

Figure 6. Coercing to a Specified Length

CVBUF PIPBFR 512 A small buffer

The PIPBFR macro defines a control structure to manage the contents of the bu er as
well as an initial allocation. The label field specifies the name of the bu er; the
operand field specifies the number of bytes to allocate initially. In this example, a
512-byte area is allocated after the bu er control block.

PIPIBFR CVBUF Ready buffer

The PIPIBFR macro initialises the addresses in the bu er control block. This cannot
be done at assembly time, because the bu er is allocated in the procedure work area,
which in turn is allocated in dynamic storage by the CMS Pipelines dispatcher.

PIPBFRLD CVBUF,((R1),(R0)),EXIT=NOTZERO

PIPBFRLD loads a string into the bu er starting at the beginning. The first operand
specifies the bu er control block. The second operand specifies the address and
length of the string to load (in this case the address and length of the record just
peeked at). These are loaded into registers 4 and 5 before the service routine is called.

13

The service routine takes care of bu er overflow and out-of-storage conditions. If the
string to be loaded cannot fit within the allocated bu er:

A new and larger bu er is obtained from system storage. If there is no more free
storage, a message is issued and a non-zero return code is set.

The contents of the old bu er up to the current high-water mark are copied to
the beginning of the new bu er. In this case the high-water mark is already set
to the beginning of the bu er so that nothing needs to be copied.

If the old bu er was obtained from CMS, it is returned to CMS. The initial
allocation in the procedure work area is, of course, left intact.

The string is then copied into the bu er and the high-water mark is set to the byte
after the end of the string.

SR R5,R8 Figure how much to pad (negative *
of)

LPR R5,R5 Make number of bytes
LA R4,256+C'*' Get pad
LNR R4,R4 Indicate pad
PIPBFRAP CVBUF,EXIT=NOTZERO

Register 5 contains the length of the string loaded into the bu er and therefore also
the number of bytes in the bu er. By subtracting the desired record length, the nega-
tive of the number of pad bytes is obtained. This number is made positive. The pad
character is loaded into register 4. Adding 256 is idiomatic to ensure that the register
always contains a positive number. This number is then made negative to indicate
that the operation desired is padding.

PIPBFRAP normally appends a string described by registers 4 and 5 to the contents of
the bu er, but when register 4 is negative, it contains a pad character, as computed
here. In fact, PIPBFRLD expands to instructions to reset the bu er control block to
be empty and then issue PIPBFRAP to load the string; thus, the operations described
for PIPBFRLD above also apply to PIPBFRAP: The bu er is extended if required and
out-of-storage conditions are diagnosed.

PIPBFRSU CVBUF Prepare to write

PIPBFRSU sets the bu er up to be written into the pipeline. It loads the base of the
bu er area into register 1 and the o set to the high-water mark (the number of bytes
currently in the bu er) into register 0. It then resets the high-water mark to the
bu er’s base to be ready for the next cycle. (This is redundant, for so does
PIPBFRLD.)

PIPOUTX (,(R8)) Write output record

To ensure that the record is truncated, the length in register 8 is used for all writes,
even when the record is padded in the bu er. The address of the record is already in
register 1; the omitted suboperand specifies that it should be left unchanged.

14 Writing Assembler Filters with CMS Pipelines

&MODULE.FV PIPDESC FP=NO,STREAMS=1,STOPABLE=YES, *
BUFFER=CVBUF, *
SYNTAX=(WORD, *
?Z,(:0,15), *
(DECWD,?NZ58,0TO15,?NP66), *
=0,8,DONE)

The program descriptor specifies the name of the bu er in the B U F F E R = operand.
When this operand is specified, the CMS Pipelines dispatcher takes care of releasing
the bu er after the stage terminates. When STOPABLE=YES is specified, it is imper-
ative that the bu ers used are identified in the program descriptor; otherwise they
might not be released.

Nested Procedures
For real filters, you will probably wish to divide the program into several procedures.
A procedure can be nested within a containing procedure. A nested procedure is
coded in the static area of the containing procedure. The work areas and save areas
are allocated and managed automatically. You may wish to use WORKBASE=R11 on
the PROC macro that opens the main procedure; this makes its work area addressable
in the nested procedures.

Use PCALL (procedure call) or PCALLTR (procedure call and test return code) to call a
nested procedure.

Because the work areas are allocated in a tree structure that mirrors the structure of
the nested procedures, proper hierarchical calls are enforced.

Making Do with “Normal” Assembler
If you would like to restrict yourself to the set of VM/ESA macros that will be docu-
mented formally in Version 2 Release 1.0, you must use two more operands on the
PIPDESC macro. Specify the first instruction of your prologue with the E P = keyword
and specify the size in doublewords of the work area you require with WORKAREA

keyword.

You are responsible for saving registers, establishing a base register, initialising your
work area, restoring registers, and setting a return code.

These macros will be documented with VM/ESA 2.1.0: PIPCMD, PIPCOMMT,
PIPDESC, PIPEPVR, PIPINPUT, PIPLOCAT, PIPOUTP, PIPSEL, PIPSEVER, PIPSHORT,
PIPSTRNO, and PIPSTRST.

Using the Toolsmith’s Guide
The CMS Pipelines Toolsmith’s Guide documentes the original Assembler interface
in CMS Pipelines level 1.1.0. The program descriptor was introduced in level 1.1.3.
When using a program descriptor, these registers contain di erent values than when
not using a program descriptor:

R1 Base for the work area.
R2 The address of the argument string.
R3 The length of the argument string.

15

R8 The stage’s position in the pipeline. (Was in register 3.)
R9 The Pipeline Services Transfer Vector. (A convenience; it is also in general reg-

ister 5.)

The PIPNUPL macro should not be used. The remaining macros still work.

Turning a Module into a Filter Package
To turn an Assembler program into a filter package that can be loaded seamlessly
with CMS Pipelines, you must create an entry point table and generate the module.

You can construct the entry point table in two ways:

Assemble it into your filter module. This is most handy if you only have one
source file and no REXX programs.

Generate it with the utility PIPGDIR. The input file lists the filter names and the
labels on the program descriptors. You can merge entry point definitions for
your Assembler filters with the ones for REXX programs.

Assembling the Entry Point Table

ENTRY PIPEPT
PIPEPT DS 0D
PIPEPT ,
PIPEPTEN CHOPVAR,FLTPKGCV
PIPEPTEN CHOPVARS,FLTPKGCS
PIPEPTEN CHOP20,FLTPKGC2
PIPEPTEN COERCEVAR,FLTPKGFV
PIPEPTEN COERCE20,FLTPKGF2
PIPEPTED ,

The entry point table in a filter package must have the entry name PIPEPT. You
must not specify operands on the PIPEPT macro, which defines the table prefix. The
PIPEPTEN macros must be ordered in ascending order by the entry point verb.

Generating an Entry Point Table from a Source File
You can also store the entry point table as a text file and use the utility PIPGDIR to
generate an object module that contains the table. The source file would look like
this:

chop20 fltpkgc2 *** Chop after 20
coerce20 fltpkgf2 *** Chop after 20 or pad to 20
chopv fltpkgcv *** Chop to specified length
chopvx fltpkgcs *** Chop to specified length
coercev fltpkgfv *** Chop/pad to specified length

The input records may be in any order. If this file is called FLTPKG EPTABLE (the file
type must be EPTABLE), you can generate the file PIPEPT TXTPARM by issuing the
command PIPGDIR FLTPKG.

16 Writing Assembler Filters with CMS Pipelines

DMSPFP Glue Module
The object module DMSPFP contains the code that makes the filter package known to
CMS Pipelines. It also contains code to install the filter package and attach it when
it is invoked as a CMS command.

Due to the way CMS works, DMSPFP must be the first control section in a filter
package. The EXEC in Figure 7 can be used to assemble the filter module, generate
the entry point table, generate the module, and attach the filter package to CMS
Pipelines:

/* Generate the sample filter package */
/* John Hartmann 14 Feb 1995 12:27:14 */
Signal on novalue
signal on error
Address COMMAND /* Real programmers address Command */

'GLOBAL MACLIB DMSGPI DMSOM' /* Name of macro libraries */

'HASM FLTPKG' /* Compile module */

'EXEC PIPGDIR FLTPKG' /* Generate entry point table */

'PIPE (name FLTPKG)', /* Make composite text deck */
'|literal dmspfp.text fltpkg.text pipept.txtparm',
'|split',
'|xlate . blank',
'|getfiles',
'|> $$TEMP TEXT A Fixed'

'LOAD $$TEMP (CLEAR RLDSAVE' /* Make module */
'GENMOD PIPUSERF (FROM DMSPFP'

signal off error
'NUCEXT *PIPUSERF' /* Is package already installed? */
If RC=0

Then 'NUCXDROP *PIPUSERF' /* Drop if so */

'PIPMOD install' /* Load new package */

error: Exit RC

Figure 7. Generating a Filter Package

Rather than coping with the quirks of loading several object modules one after the
other, the EXEC generates a composite object module and loads a single file whence
it generates the module.

Because the module file has one of the magic filter package names, it is installed by
the main pipeline when the PIPMOD command is issued with the INSTALL operand.

When the module has a more pedestrian name, you must invoke the module as a
CMS command to attach it to CMS Pipelines. This operation is called filter package
self-install.

17

Adding REXX Filters to a Filter Package
To add some REXX filters to the filter package, you must first create a file that lists
the file names of the individual REXX programs. The file type of this file should be
REXXES.

If the file is called RXFLTPKG, you can issue this command to generate an object
module:

pipgrexx rxfltpkg (compress nodir

The options specify that the REXX filters should be one-lined and compressed as
much as possible (COMPRESS); the object module is not to contain an entry point
table for the REXX filters (NODIR).

These files are created: RXFLTPKG TXTPARM, which contains the object module, and
REXXES EPTABLE, which contains the source entry point table for the REXX filters in
the package. You would then use XEDIT to append the REXXES EPTABLE to the
other entry point table, run this through the utility, and generate a module that con-
tains the composite entry point table and both object modules.

How-tos
This section describes some finer points that you may find useful when you embark
on your first filter package.

Copyright Notice.
To add your own DCs to set a copyright notice of your own:

MYMODULE MODBEG FREETYPE=NONE,CNOTE=NO
PDATA , To main control section

DC C'COPYRIGHT 1887, ACME CO. KLONDIKE USA. '
DC C'ALL RIGHTS RESERVED'

DMSPDEFS VECTOR=R9

The PDATA macro ensures that the following instructions are in a location counter
that is beyond all other location counters used so far.

Literal Pools
The CMS Pipelines macros assume reasonably small procedures and also reasonably
small modules. You must insert literal pools at strategic points in large programs.

The standard LTORG assembler instruction may not be e ective in a procedure,
because CMS Pipelines uses many location counters to do its magic and mirrors.
Use PLTORG in a static data area to generate a literal pool:

PEXIT RC=(R15)
PLTORG ,

18 Writing Assembler Filters with CMS Pipelines

Constants at the End of the Module
To generate constants after the final literal pool:

PROCEND ,
PDATA ,

LTORG ,
BIGDATA DS 0D

DC 3765X'DEADBEAF'
MODEND ,

The PDATA macro ensures that the following code is in a location counter behind all
currently defined location counters. The LTORG assembler instruction generates the
final literal pool. The beginning of the constant will be addressable; there are no
labels beyond the beginning of the large constant.

Scanning the Argument String
The examples at the beginning of this paper show how to scan for a decimal number.
You can process much more complex arguments with CMS Pipelines services.

The scanning routines have adopted these register conventions:

R0 Integer return value. Single character in the loworder byte. For a range,
the lower bound.

R1 Upper bound on a range of integers or characters. Address of an eight-
byte token.

R2 Beginning of the remaining unscanned argument string.

R3 The length of the remaining unscanned argument string.

R4 Beginning of a word scanned o the argument string.

R5 The length of the word.

Some of the scanning routines are:

PIPSTRLB Strip leading blanks from the argument string. This is useful to test for
the presence of an operand following a keyword; the operand remains
intact in registers 4 and 5, ready for substitution into an error message.
Message 15 is popular for a missing keyword value.

PIPSTRTB Strip trailing blanks from the argument string.

PIPBUWD Back up to the last scanned word. This is useful to recover from specula-
tive scanning that went wrong.

PIPMTKN Load a word into an eight-character token, padded or truncated as neces-
sary.

PIPUTKN Load a word in uppercase into an eight-character token, padded or trun-
cated as necessary.

PIPDRNG Scan a word for a decimal range. This was originally intended to scan for
column numbers. The defaults associated with asterisks are preloaded
into registers 0 and 1, respectively.

PIPXCHR Scan a word for being a single character or a two-character hexadecimal
representation of a character.

19

PIPXRNG Scan a character range.

PIPSDEL Scan a delimited string from the arguments. This is normally preceded by
PIPSTRLB to ensure that the delimiter is not blank. When called from a
syntax exit, PIPSDEL does not handle hexadecimal or binary literals, but it
does when used in a syntax program.

Message Numbers
The PIPERM macro is clearly a handy way to issue a message, but it uses the original
message numbering scheme used by the CMS Pipelines Program O ering. It is not
obvious which number to use unless you have a copy of the documentation for the
original Program O ering. (CMS Pipelines User’s Guide, SL26-0018-1.)

You can find the original message numbers and message texts in the module
DMSPRM beginning at the label MSG0. The numeric part of the label is the original
message number. You will not see the message text shown in DMSPRM if a CMS
message has been assigned. The table at label DMSPRM@R relates the original
message numbers to VM/ESA messages.

Other Dispatcher Services
The CMS Pipelines dispatcher supports many more services than the
peek/write/consume functions shown earlier:

PIPSHORT Connect the currently selected input and output streams directly,
bypassing the stage. Use PIPSHORT when you wish to copy all remaining
input unchanged to the output.

PIPSEL Select a stream. Specify the side and the stream number or stream
identifier.

PIPSTRNO Return the stream number corresponding to a stream identifier.

PIPREXX Run a REXX subroutine with access to the pipeline. Be sure to make
registers 2 and 3 zero before issuing this macro, unless you wish to specify
an in-storage program.

PIPCMD Issue a pipeline command.

PIPSEVER Sever a stream.

PIPSTRST Return stream’s status.

More Ways to Treat a Bu er
CMS Pipelines supports more macros to handle bu ers than have been highlighted in
the examples:

The pre-allocated area need not be contiguous with the bu er control block; you
can specify a remote location by the A R E A = keyword.

You can use the PIPBFROP macro to manipulate the contents of the bu er
control block with RX-type and RS-type machine instructions:

PIPBFROP <buffer>,<opcode>,<register>,<field>
PIPBFROP CVBUF,L,R1,BASE

The first positional operand specifies the label of the PIPBFR macro that defines
the bu er control block. The remaining operands specify the operation to
perform. The second positional operand specifies the operation code to generate;
the third operand specifies the source or destination register; and the fourth
operand specifies the symbolic name for the particular field you wish to reference.

20 Writing Assembler Filters with CMS Pipelines

LEN contains the number of bytes in the bu er; BASE contains the address of the
first byte of the bu er; and NEXT contains the current high-water mark for the
bu er. Do not change the base when the bu er has been extended; CMS
Pipelines will issue an erroneous storage release request if this field is corrupted.

Determining Whether a Stage Is Stopable
Specifying STOPABLE=YES on a program descriptor allows the pipeline dispatcher to
terminate the stage immediately it determines that all input streams are at end-of-file
or that all output streams are severed. The dispatcher can even terminate a stage that
is waiting for input when all its output streams are severed. This allows end-of-file to
travel backwards faster than it would otherwise do; thus, you should strive to make
your filters summarily stopable.

But beware that a stopable stage might not resume control after any call to the CMS
Pipelines dispatcher. These are indications that you should not specify
STOPABLE=YES:

You wish to write a record after you receive end-of-file on your input; for
example, a summary record.

You have allocated resources that you must de-allocate before the stage can ter-
minate.

In these situations, you can specify STOPABLE=RC8 to indicate that you are prepared
to handle return code 8 on a read as meaning that all outputs have been severed.
Clearly, if the outputs are severed, you need not spend much time computing a
summary record, but you must still de-allocate whatever resources you have allo-
cated.

PIPLOCAT EXIT=MINUS Terminate if stall
IF POSITIVE EOF of some sorts?

C R15,=F'8' Outputs gone
GOTOEXIT 0,COND=EQUAL Yes, terminate now
PCALL WRITE_SUMMARY Go do the summary

FI ,

Use Commit Levels when You Allocate CMS Resources
You must be particularly vigilant when your program allocates a resource from CMS,
for example a CPIC conversation.

Do not allocate any resources in a syntax exit. You will not be able to de-allocate
them if some other syntax exit returns with an error.

Instead, allocate the resource on a negative commit level. Specify a negative commit
level in the PIPDESC macro. COMMIT=-2000000000 is a popular value, but any negative
number will do. Allocate the resource at the beginning of the program. You can
signal any error in obtaining the resource by a non-zero return code at this low
commit level, before other stages have taken any irreversible action.

When you have allocated the resource, commit to level zero. If the return code on
the PIPCOMMT macro is non-zero, some other stage failed to commit; you should
de-allocate the resource and terminate.

21

When using commits and allocating resources, it is customary to put the actual filter
into a subroutine, which is only called when conditions are favourable:

PBEGIN ,
PCALLTR ALLOCATE_RESOURCE Try to get it
PIPCOMMT 0 Got the resource
IF NOTZERO Abort

LA R15,0 Make return code zero
ELSE ,

PCALL PROCESS_DATA Go do real work
FI ,
LR R10,R15 Save return code
PCALL DEALLOCATE_RESOURCE
LR R15,R10 Restore return code
PEXIT RC=(R15)

&MODULE.FT PIPDESC COMMIT=-2000000000, *
...

Anatomy of the Syntax Abstract Machine
The program that you specify in the S Y N T A X = operand of the PIPDESC macro is for
an abstract machine with these characteristics:

A location counter, which addresses the current instruction.

General registers 0 through 5, and 15.

Read-only storage for constants.

Write-only storage, which is mapped to the first 1024 bytes of the stage’s work
area.

A read/write register set, which contains the register contents that are loaded into
the general registers when the stage is dispatched. This area contains nineteen
registers; the first twelve map to the stage’s general registers 0 through 11.

The ability to conditionally and unconditionally issue messages and terminate.

The ability to branch conditionally and unconditionally.

The ability to call one level of subroutine.

An Entry Point Can Resolve to More than Program Descriptors
When the CMS Pipelines scanner resolves an entry point, it scans its entry point
tables for the specified name. If it finds the name in a table, it gets the address of the
entry point from the table.

The scanner then inspects storage at the location resolved so far. If the byte does not
contain X'00', it is assumed to be an executable instruction. The scanner looks to
see if it represents a compiled REXX program, but apart from that it looks no
further.

When the first byte of the entry point contains X'00', it is clearly not an executable
instruction. The scanner then looks into the next three bytes for a code to describe
what follows.

22 Writing Assembler Filters with CMS Pipelines

pip—Program Descriptor
The PIPDESC macro expands to begin with the magic constant A(C'pip'). You have
already seen how a program descriptor is used.

rex—An In-storage REXX Program
This is the format generated by the PIPGREXX utility. The next fullword contains the
length, in bytes, of the descriptor list, which follows. The descriptor list contains
eight bytes for each line of the REXX program, the address and the length.

cmd—A Pipeline Command To Be Issued
There is no utility to generate this format. The following fullword contains the
length of the pipeline command, which follows. This is getfiles:

ENTRY &MODULE.GF GETF
DS 0D Align GETF

&MODULE.GF DC A(C'cmd',GF_LENGTH) GETF
DC C'callpipe (name getfiles) *:' GETF
DC C'|change 1.7 / &&1 &&2 //' GETF
DC C'|strip' GETF
DC C'|locate 1' Discard blanks and null GFDELBLK
DC C'|change /"/""/|change /+/"+/' NOTPLUS
DC C'|spec ,callpipe ' NOTPLUS
DC C'(name GETfile stagesep + escape ")' NOTPLUS
DC C'<,1 w1.3 nextword ,+' GETF
DC C'unpack+' GETF
DC C'*:, next' GETF
DC C'|pipcmd' GETF
DC C'|*:' GETF

GF_LENGTH EQU *-&MODULE.GF-8 GETF

ept—A Sub-keyword Table
A sub-keyword table causes the scanner to scan one more word from the stage’s
argument string and look this word up in the entry point table, which is headed by
this magic constant.

Such an entry point table is generated by PIPEPT when a positional operand is
specified.

This example is from a filter package that contains both a primary and a secondary
entry point table:

23

ENTRY PIPEPT Define entry point table
PIPEPT DS 0D
PIPEPT ,
PIPEPTEN PRTASM,GOPRT
PIPEPTEN PRTASMF,EPTABLE
PIPEPTED , End of table

SPACE 1
PIPEPT EPTABLE,ENTRY=NO
PIPEPTEN ADDHEAD,EPDOHEAD Add headings and page breaks
PIPEPTEN CLSECT,EPCLSECT Classify sections
PIPEPTEN CONDLIT,EPCOND Conditional literal
PIPEPTEN DIAGDIR,EPDIAG Diagnostic
PIPEPTEN GENCODE,EPGEN Generated code to test
PIPEPTEN PXREF,EPPXREF Procedure cross ref
PIPEPTEN TESTTITL,EPTITLE Remove unwanted ejects
PIPEPTEN XREF,EPXREF Cross reference
PIPEPTED , End of table

lup—A Look-up Routine
The lookup routine is capable of looking an entry point up in some CMS table. For
example, the ldrtbls program is a look-up routine. Using a look-up routine rather
than a program descriptor allows the resolution process to continue after the CMS
object has been located; it could in turn be a program descriptor.

The scanner scans the next word and calls the look-up routine to find the entry
point.

rou—A Router
A router inspects the remainder of the argument string and selects an appropriate
program descriptor to process the particular request. This allows for “overloading”
of the built-in programs. The router function was introduced in CMS Pipelines level
1.1.9 to support the selection of a device driver that is appropriate to the particular
request. For example, in level 1.1.9, the device driver < can cope with:

A one-word path name or a path name enclosed in parentheses, which identifies
an OpenEdition file.

A two-word argument string or a longer argument string where the third word
indicates a mode letter and optionally a number, which is processed by the ori-
ginal minidisk device driver.

Other arguments strings, which indicate that the file is referenced through a name
definition or an SFS directory. The device driver to read SFS files is then used.

Coping with Older Level of CMS
This paper was written and the samples were run using an early version of the macro
library that will be shipped with VM/ESA 2.1.0. The sections below highlight the
considerations for mixing and matching filter packages and CMS Pipelines levels.

24 Writing Assembler Filters with CMS Pipelines

Filter Package Transportability
In most cases, a filter package generated on any CMS release will work with any
other version of CMS Pipelines.

The exception is specifying multiple bu ers in the B U F F E R = operand of
FPEP/PIPDESC. This support was added in CMS Pipelines level 1.1.7, which shipped
in ESA 1.2.1. An ABEND is likely if a filter that specifies multiple suboperands on
B U F F E R = is run on VM/ESA 1.2.0, VM/ESA 1.1.1, or on level 1.1.6 of the Program
O ering/PRPQ.

Source Program Portability
If you wish to be able to assemble the module on all current CMS releases, you need
to be more careful, because some macros have changed names even though the code
they generate is unchanged. (Some of the reasons for this are “non-technical”.)

The easiest way to cope with assembling on older levels of CMS is to provide the
2.1.0 level of the relevant macros, which in the examples shown in this paper
amounts to DMSPIPID, PIPDESC, FPEP, FPI, DMSPDEFS, DEFCHARS, #CHAREQU, and
FPL#VER.

The sections below are structured as antinews; that is, they explain how to cope with
function that has been removed when one adopts the standpoint of a subsequent
release.

CMS 11 (1.2.2)
Use FPEP rather than PIPDESC. You must also code the flags as suboperands to
F L A G S = rather than as individual keyword operands. The encoding of these flags is
easily determined by inspection of the definition of the flags in the FPI macro, which
is the mapping macro for the program descriptor.

CMS 10 (1.2.1) and CMS 7 (1.1.5)
No function was removed that is relevant to the examples in this paper.

CMS 9 (1.2.0)
DMSPIPID has been renamed to PGMID.

No sublist is supported on the B U F F E R = operand of FPEP.

CMS 8 (1.1.1)
No CMS Pipelines function was removed in the transition from VM/ESA 1.2.0 to
VM/ESA 1.1.1.

The pipeline shipped in CMS9 is identical to the one shipped in CMS8, which in
turn is identical to level 1.1.6 of the CMS Pipelines Program O ering.

Conclusion
CMS Pipelines provides a well-honed set of macros to interface to its service routines.
This paper has shown five examples of not quite trivial Assembler filters and pro-
vided much background information, which will be useful for the Assembler pro-
grammer who wishes to explore writing Assembler filters or wishes to explore the
CMS Pipelines source code.

25

Bibliography
CMS Pipelines Toolsmith’s Guide, IBM Corp 1987, form number SB11-6605 or
SL26-0020.

VM/Enterprise Systems CMS Pipelines User’s Guide, IBM Corp 1994, form
number SC24-5609.

John P. Hartmann, CMS Pipelines Explained, Proceedings of SHARE 78,
Anaheim, CA, March, 1992, pp. 590-607.

John P. Hartmann, Using High-Level Language Concepts with Assembler Pro-
grams, Proceedings of SHARE 74, Anaheim, CA, March, 1990, pp. 983-989.

Appendix. Issuing a PIPE Command from an Assembler Program
Though it is in some sense the opposite of the stated objectives for this paper, it may
still be illustrative to see how one invokes a pipeline from an assembler program.
You can use the storage device driver to write data from your program into the pipe-
line and to take them out again.

To obtain the pipeline level:

FIGURE_LEVEL PROC SAREA=NO
LA R0,FWD Address to store Pipes level.
PCALL MAKEHEX Convert to hex in DWD field.
MVC QADDR,DWD Store as "storage" address parm.
CMSCALL CALLTYP=EPLIST,PLIST=PL,EPLIST=EQL Level into FWD.
...
PEXIT RC=(R15)

SPACE 1
MAKEHEX PROC SAVE=NO,SAREA=NO,BASE=NO
ST R0,FWD Make fullword
UNPK DWD(9),FWD(5) Unpack
NC DWD,=8X'0F' Strip
TR DWD,=C'0123456789abcdef'
PROCEND RC=

SPACE 1
FWD DS F
DWD DS D

DS D slop
PL DC CL8'PIPE',2F'-1'
EQL DC A(QPIPE,QARGB,QARGE,0)
QPIPE DC C'pipe ' Determine Pipelines level:
QARGB DC C'(listerr) '

DC C'query level |' Issue query.
DC C'storage ' Store response in FWD field.

QADDR DS CL8 Hex address of FWD field.
DC C' 4 e0' Length and storage key.

QARGE DS 0C
PROCEND FIGURE_LEVEL

26 Writing Assembler Filters with CMS Pipelines

