

LOOKUP - A Plumber's Swiss Army Knife

Rob van der Heij
rvdheij@nl.ibm.com

VM and VSE Technical Conference
Session 3D8

June 2000, La Hulpe, Belgium

 Introduction
The lookup stage has already been available in CMS Pipelines for a long time. Looking
for a short summary of its function I found the description by John Hartmann, the author
of CMS Pipelines, most to the point:

Lookup processes an input stream (detail records) against a reference (master
records), comparing a key field. When a detail record has the same key as a
reference record, one or both of the records are passed to the primary output
stream. Unmatched detail records are passed to the secondary output stream.
Unmatched reference records are passed to the tertiary output stream after end-
of-file has been reflected on the primary input stream.

Although this description is still correct for the function currently available, there is a lot
more to tell about lookup. In this paper I will not just explain the basics of using lookup
but I will also try to cover the enhancements to lookup in CMS14 (the CMS that comes
with VM/ESA 2.3.0).

Novice plumbers should really make themselves familiar with lookup since it is a very
useful part of their toolkit. I hope that even experienced plumbers will find here plenty
of new ideas to use lookup for solving their plumbing problems, as happens to me almost
every day while using CMS Pipelines.

The Runtime Library
The features of lookup that I will show in this paper are available in the latest level of
CMS Pipelines that comes with VM/ESA 2.3.0 (and 2.4.0). Especially if you are still
running an earlier level of VM/ESA you should consider to download the free-of-charge
Runtime Library from the Pipes Web pages at Princeton.

http://pucc.princeton.edu/%7Epipeline/

You will not only find here the latest level of CMS Pipelines, you will also find several
papers on Pipes, and useful utilities written by other plumbers.

The Original Use for Lookup
The most common use for lookup is when you need data from two input streams (e.g.
tables) to be combined. Suppose you have a list of all userids defined on the system with
the name of that user. The following pipeline will show the names of the users that link
to the 19E disk.

 1

'PIPE (end \)',
'\ cp query link 19E',
'| split ,', /" Split at commas "/
'| x: lookup w1 detail master', /" Lookup with userid as key "/
'| spec w2.2 1 read', /" cuu and link mode "/

'1*-" nw', /" .. and append the name "/
 '| cons',

'\ < users list', /" Full list of users "/
 '| x:'

The lookup in this example will first read the master records from the secondary input
(the file “users list”). After the entire stream has been read, lookup will read records
from the primary input. The output of the CP command is split into one userid per
record, and passed to the primary input of lookup. The detail master keywords specify
that both the detail and the master record should be written in that order to the primary
output when a detail record is matched by a master record. The spec stage takes these
two records (because of the read) to build a single output record per userid.

The example above assumes that all userids will be in the master file. If this is not the
case you will need to do something with the userids that have linked to your disk but are
not in the list. The unmatched detail records are written to the the secondary output of
lookup. We will just use the userid for those.

'PIPE (end \)',
'\ cp q link 19E',
'| split ,',
'| x: lookup w1 detail master',
'| spec w2.2 1 read', /" cuu and link mode "/

'1*-" nw', /" .. and append the name "/
'| f: faninany',

 '| cons',
'\ < users list', /" Full list of users "/

 '| x:',
'| spec w2.2 1 ,User, nw w1 nw', /" no match, use the userid "/

 '| f:'

The stream we did not use in this example is the tertiary (or third) output stream where
lookup writes the unused masters (the master records that were not referenced by a detail
record). To display these unused masters on the console you would just add another
reference (the third) to the label of the lookup in the example above.

 '\ x:',
 '| f:'

The naming and numbering of the streams may be confusing when you are new to multi-
stream pipelines. The primary or first stream has number 0, the secondary stream is
number 1 and the third or tertiary stream is number 2, and so on. You can find a good
introduction to multi-stream pipelines in the papers by Melinda Varian and in “CMS/TSO
Pipelines Author's Edition” by John Hartmann. You can find both at the WEB pages at
Princeton.

The softcopy BOOK version of “CMS/TSO Pipelines Author's Edition” is also on the
latest “VM Collection CD-ROM” (publication SK2T-2067-16)1

The single pipeline using lookup as shown above can replace common REXX program-
ming like the section below.

1 Be aware that the CD-ROM also contains other books that refer to CMS Pipelines (i.e. the documentation for VM/ESA 2.4.0).
In those other books you will not find most of the lookup features discussed here.

2

'PIPE cp query link 19E | split , | stem resp.'
do i = 1 to resp.*
parse var resp.i userid cuu mode .
'PIPE < users list | locate 1.8 /'left(userid,8)'/ | var answer'
if symbol('ANSWER') = 'LIT' then say cuu mode 'Who is' userid
else say cuu mode substr(answer,11)

end

Even though both solutions use CMS Pipelines you will notice the difference in style.
This difference is often referred to as “PipeThink.” If you try both solutions with a
serious number of logged on users and a non-trivial file, I am pretty sure you will also
notice the difference in resource usage.

Specifying the Matched Records to be written
There are a number of keywords that specify what needs to be written to the primary
output of lookup when the key field of a detail record matches the key of a reference
record. You can use detail to have only the detail record (to do some kind of validation
on the detail records) or master to only get the reference record from the table. The
combination detail master or master detail will give you both, in the order specified.

The allmasters keyword specifies that master records with duplicate keys are also kept in
the reference table (they are normally discarded). So the sequence detail allmasters will
cause lookup to output the detail record followed by all master records that have the
same key.

Depending on the type of data being processed it may be difficult to distinguish between
detail record and master records when allmasters is used (because you may not know
how many master records will match the detail record). In that case it may be helpful to
use the pairwise option that will output one copy of the detail record for each reference
record that was matched.

The railroad track syntax diagrams in the CMS/TSO Pipelines documentation show what
options can be combined or not, but you will probably find it very intuitive.

The Input Ranges
The lookup stage optionally takes one or two input ranges to define the key field. The
first range defines the key field in the detail record, the second one is for the key field in
the master record. If the second input range is omitted it defaults to the input range as
specified for the detail records. If both ranges are omitted the entire input record is used
as a key field.

The key field used to be just a column range, but with CMS Pipelines 1.1.10 this was
enhanced to allow the general input range that can be specified with many other stages.
Not only can you now do a lookup against words but you can even use the constructs
like substring to identify the key field. This can save you a lot of specs stages before
and after the lookup.

You may also need to use the pad option when one of the keys fields could be shorter
than the other. There also is an anycase option when you want a case-insensitive match
to be done.

 3

Replace a Cascade of Locates
The lookup stage is also very handy to select the records that match one or more of the
search criteria you have. The classical solution for this is a cascade of locate or pick
stages like this:

'PIPE (end \ name RMHLUP.DOC:124)',
'\ < rscs logging ',
'| x1: locate w2 ,DMTNHD144I,', /" Is it the first key "/
'| f: faninany ',

 '| process',
 '\ x1:',

'| x2: locate w2 ,DMTNHD145I,', /" Is it the second key "/
 '| f:',
 '\ x2:',

'| x3: locate w2 ,DMTNHD146I,', /" Is it the third key "/
 '| f:',
 '\ x3:',
 ...

If you use lookup you can replace such a cascade with the following pipeline:

'PIPE (end \ name RMHLUP.DOC:139)',
'\ < rscs logging ',
'| l: lookup w2 w1 detail ',
'| process ',
'\ literal DMTNHD144I DMTNHD145I DMTNHD146I',
'| split', /" Keys as single records "/
'| l:' /" .. and passed as reference "/

This solution makes adding a few more keys to search for very easy. If necessary you
could even load the keys from a file or produce them with another pipeline. Rita, the
Pipeline Profiler, showed that even in the case of just two keys to look for the lookup
solution already uses less CPU time than the equivalent locate stages.

Plumbers who kept up with recent enhancements may know the all stage can be used to
build a cascade of locate stages. Since all under the covers just is such a cascade, it will
not run faster than one crafted by hand.

Combine Tasks in a Single Lookup
The following example comes from one of my CGI scripts (Common Gateway Interface -
the way to program a web server). When forms data on a web page is sent to the web
server the posted data is passed to the CGI in records like this:

name=Rob
email=rvdheij@nl.ibm.com
country=nl

The portion before the “=” is the field name as specified in the form definition. The value
entered by the user is at the right hand side of the “=” sign. The browser only sends
fields entered by the user so you need some programming to verify that all required fields
are present and supply defaults for optional fields that were omitted.

The following subroutine pipeline reads a list of field names plus their default value
through the secondary input stream and then verifies the records on the primary input
stream against that list. When the lookup stage terminates the unreferenced master
records (i.e. field names that are valid but were not posted) are written to the primary
output of the subroutine as well. This means that the subroutine outputs the entire set of
field names with either the posted value or the default (if specified).

4

'callpipe (end \ name ValidPrm)',
'\ ":', /" Posted tags to verify "/
'| l: lookup anycase', /" Ignore case difference "/

'fs = f1 detail', /" Match on field name "/
'| i: fanin',
'| xlate fs = f1', /" Make name uppercase "/
'| insert ,=,', /" Make it VARLOADable format "/

 '| ":',
'\ ".input.1:', /" List of tags plus default "/

 '| l:',
'\ l:', /" Unused master records with "/
'| i:' /" their default value "/

A pipeline like this can do a lot of the screening work in just a single lookup stage. It is
not difficult to enhance the pipeline to also check that all required fields have been
posted.

After this screening the output of the subroutine could be passed to a varload stage so the
remaining REXX program can use the REXX variables corresponding with the field
names.

Note: It would not be safe to use varload without such a check because users could
modify the data sent to your server to include field names that were not on the form and
thus modify REXX variables that you don't want to be modified in your program (e.g.
supply an additional “userid” field).

Counting the Number of References
There are several options that deal with counting the number of references made to a
reference record (i.e. the number of hits). With each master key in the table a counter is
maintained, originally intended to count the number of hits. The enhancements to lookup
support manipulation of the counter in a few other ways too. I will be showing an inter-
esting example of that later in this paper.

The COUNT option
When the option count is specified lookup will record the number of references made
with each master key. When the stage terminates all reference records will be written to
the tertiary output, prefixed by the value of the corresponding counter. Without the count
option only the unreferenced master records are written to this output stream.

In many situations you can also use sort count to find the frequency of the keys but
lookup is practical if you need to keep the detail records in the pipeline because it does
not reorder the records as sort count would do. If you are using lookup already in the
pipeline and need to count the hits the count option is cheaper than the alternative.

The TRACKCOUNT option
While count only outputs the number of matched records when the lookup stage termi-
nates, trackcount prefixes each master record with the current count value when it is
written to the primary output.

This option is very useful when you need to assign sequence numbers to all records with
the same key. If the input stream was sorted you could do that with the arithmetic built in
the specs stage, but trackcount does it even without sorting the input stream.

 5

The SETCOUNT option
With the setcount option you indicate that each master record is prefixed with a 10-byte
numeric value that will be used as the initial setting of the counter (the default setting for
the counter is of course 0). The main use for this option is to maintain a kind of running
total over multiple invocations of the lookup stage.

The INCREMENT option
When increment is specified lookup expects each detail record to be prefixed with a
10-byte numeric value that is added to the counter of the master record that it matches.

A possible way to use this option is to do some kind of score keeping where lookup
sums all values with the same key. When this is combined with trackcount you can
maintain a running total.

Combining the Counting Options
The different options for manipulation of the counter are independent of each other. In
particular the fact that count is not implied by any of the others may be confusing at first
but it does give you maximum control over the process.

The description of what records will be written to the tertiary output (the masters that
were not matched) has been refined to “the reference records with a count of zero.” Using
the increment and setcount options you can make lookup write master records to the
tertiary output that were actually matched precisely once or whatever your application
might need.

Updating the Reference Table
One of the major restrictions of lookup used to be that the reference table was loaded at
the start of the pipeline and could not be modified afterwards. When you are working
with static data this is often not really a problem since you can buffer the detail records
before passing them to lookup. When you are working on real-time data (e.g. in some
kind of server processing the commands when they come in) you just don't want to delay
processing until all data is available. Some plumbers have found ways to make lookup
terminate and reload its table again, but that process becomes pretty expensive when the
table gets large.

In response to our pleas the Piper has enhanced lookup with several ways to change the
reference table while lookup is running.

The AUTOADD option
When autoadd is specified, lookup automatically adds each detail record to the reference
table when it is not found in the table.

The autoadd option is very neat for finding unique keys in a file, again without the need
to reorder the file. The following pipeline lists the duplicate words in an an input file:

'PIPE < input file | lookup autoadd detail | > dup words a'

Each time a new key is encountered in a detail record, no match is found in the refer-
ence, so that record is not written to the primary output. It is then added to the reference,
however, so if that key is encountered in a later detail record, that record will be written
to the primary output, because it will match a master record.

If you would need to see the unique keys instead, you would use the secondary output
rather than the primary (because the detail record does not match the first time). That
pipeline looks like this:

6

'PIPE (end \)',
'\ < input file ',
'| l: lookup autoadd detail',

 '\ l:',
'| > unique words a'

Some plumbers prefer to use the not stage in that case to swap the primary and secondary
output:

'PIPE < input file | not lookup autoadd detail | > unique words a'

When you start to combine autoadd with the count option it may be annoying that the
count is always one off (because the detail record is added after the first miss). The
before option makes lookup add the record before matching it. This means that the count
will be complete and that none of the detail records will be written to the secondary
output.

When autoadd is used the input range for the detail record and the master record must be
the same.

The keyonly keyword specifies that only the key of the record should be stored in the
reference table (for example to save storage). Especially with autoadd this option is
useful.

An elegant example from the Piper builds REXX stemmed variables from an input file
like TCPIP DATA. The lines in that file look like this:

nsinteraddr 1.2.3.4
domainorigin foo.bar
nsinteraddr 3.4.5.6

The first word in the record is a variable name, the remainder is the value of that vari-
able. The same variable can occur more than once so we want the values to be stored in
REXX stemmed variables. The output records are of the form “=name.i=value,” where
“i” is the numeric index of the stemmed variable. This format can be used as input for
varload or varset.

'callpipe (end \ name StemBuild)',
'\ ": ',
'| l: lookup count', /" Dump masters with count "/

'trackcount', /" Master with current count "/
'autoadd before', /" Add master automatically "/
'keyonly', /" Only need the key "/
'w1', /" First word is the key "/

 'master detail',
'| spec ,=, 1 11-" n ,., n', /" Write =name. "/

'1.1* strip n ,=, n', /" .. and sequence number "/
'read w2-" n', /" .. and the value "/

'| f: faninany',
 '| ":',
 '\ l:,

'\ l:', /" The dumped masters "/
'| spec ,=, 1 11-" n ,.*=, n', /" Write =name.*= "/

'1.1* strip n', /" .. and the counter "/
 '| f:'

This pipeline uses the trackcount option to assign sequence numbers to each occurrence
of the key (so we index the stemmed variable). The autoadd before causes each new key
to be added before the matching the detail record so the sequence numbers will start at 1.
The count option causes lookup to dump the contents of the reference table with their
count value when it terminates. These records are used to set the “.0” variables that
define the number of entries in the stemmed array.

 7

Note: This subroutine pipeline is available as the stembuild built-in stage of CMS Pipe-
lines.

The Tertiary Input Stream - Adding Masters
For more complicated dynamic updates of the reference table a tertiary input stream was
added to lookup. Records read on this input stream are added to the reference table while
lookup is running.

Consider the case where you have a service machine that will process commands from
authorised users. A lookup can be used to verify the originator against the list. To define
additional authorised users I have used immcmd to set up an immediate command ADD.
A userid specified on the immediate command will be passed to the tertiary input of
lookup.

'PIPE (end \ name RMHLUP.DOC:243)',
'\ starmsg ', /" Read commands via SMSG "/
'| not chop 8 ', /" Discard SMSG header "/
'| x: lookup 1.8 detail ', /" Check originator "/
'| process ', /" Process the command "/
'| cons ',
'\ < auth users', /" Read authorised users "/

 '| x:',
'| insert ,Rejected command: ,', /" Identify unauthorised cmds "/
'| cons', /" .. and display them "/
'\ immcmd ADD', /" Set up immediate command "/
'| spec w1 1.8 | xlate ', /" Isolate userid & upper case "/
'| >> auth users a', /" Update the file too "/
'| x:' /" Add this user to table "/

You will notice that added authorised users are also appended to the disk file. Reading
and writing the same file in the pipeline works here because lookup reads the entire file
before it starts to process any detail records.

A service machine using lookup like this does not have to be stopped anymore to add
authorised users, but typing the command from the console of the service machine is not
always practical. A more logical solution would be to have an extra command that can be
issued by authorised users.

'PIPE (end \ name RMHLUP.DOC:385)',
'\ starmsg ',
'| not chop 8 ',
'| l: lookup 1.8 detail',
'| add: pick anycase substr w1 of 9-"',

'/== ,ADD,', /" Divert ADD command "/
'| process', /" Process others "/

 '| cons',
'\ < auth users', /" List of authorised users "/

 '| l:',
'\ add:', /" The ADD command "/
'| spec substr w2 of 9-" 1.8', /" Take userid as key "/
'| xlate', /" .. in upper case "/
'| copy', /" Consume one record "/
'| >> auth users a', /" Update file too "/

 '| l:'

What I have added to this pipeline is the pick stage to select the records that have the
ADD command (after the userid that issued the command has been verified by lookup).
The input range substr w1 of 9-* (i.e. the first word, counting from column 9) allows for
a correct test without the need to modify the input record (since I want the others to pass
to the processing stage unmodified).

8

The ADD commands that are identified by pick are passed through the spec stage to take
the second word of the command.

The copy stage is needed here to prevent the pipeline from stalling. When your pipeline
stalls it is important to understand why that happens, and fix it in the design of your
pipeline. There is no general solution to prevent stalls in your pipeline, as some may want
you to believe. In this particular case the stall is caused by the requirement that lookup
wants the record on the primary output to be consumed before it can read one on the
tertiary input. The copy stage provides a one-record buffer that can hold the record and
allow lookup to complete writing the record and proceed to where it can read from the
teriary input stream.

The Quarternary Input - Remove Masters
You will not be surprised to find that the Piper has also created a way to remove masters
from the reference table. An additional fourth input stream is used for that. When a
record is read on the fourth input stream all2 reference records with the corresponding key
are removed from the reference table.

Getting back to the example of the pipeline that processes commands from authorised
users, you could add another pick stage to select DEL commands from authorised users
and use that to remove authorised userids from the reference table. Instead of the two
pick stages you can also use another lookup stage to separate the ADD and DEL com-
mands from the rest.

Instead of working out such an example, I will show you one of my other favorite stages:
deal.

Combination with the deal stage makes for very interesting pipelines. In its basic form
deal will pass the records to its output streams in a round-robin style like a card player
deals cards. But deal can also pass the record to the stream identified by a field in the
input record or by a record read from the secondary input stream.

I will now extend the example a bit by moving the command decoding outside the proc-
essing stage. Where the previous example used a pick stage to select the ADD command
I now use a lookup to check the command.

'PIPE (end \ name RMHLUP.DOC:431)',
'\ starmsg ',
'| not chop 8 ', /" Remove prefix "/
'| l1: lookup 1.8 detail' /" Check authorised users "/
'| l2: lookup anycase substr w1 of 9-" w1 master detail',
'| d1: not deal',
'| d2: deal secondary',

 '| process',
'\ d1:', /" The master record "/
'| spec w2 1', /" Just to stream number "/
'| d2:', /" Secondary input for deal "/

The first deal in this example works in round robin fashion, but since I need it to start
with the secondary output I use not deal that swaps the outputs of the stage.

The second deal has the secondary option specified so it will take the stream identifier
from the secondary input. This secondary input is in fact derived from the records dealt

2 The all applies to the situation where allmasters is specified. When allmasters is not specified there will be at most one
reference record to be removed for a given key.

 9

by the first deal stage. For each detail record that is read from the primary input, deal
will write that record to the output stream indicated in the second word of these master
records.

Assume the list of valid commands is in a separate file. All we have to do is add our two
additional commands to modify the authorisation list.

'\ < command list', /" List of supported commands "/
'| insert , *, after', /" Tag these with a * "/
'| literal ADD 1', /" Plus the ADD command "/
'| literal DEL 2', /" .. and the DEL command "/

 '| l2:',

The numbers with each command specify the output stream to be used by the second deal
stage in the pipeline. The primary output of deal is already defined above (passing the
records to the process stage).

'\ < auth users',
 '| l1:',

'\ d2:', /" Secondary of deal: ADDs "/
 '| copy',

'| spec w2 of substr 9-" 1', /" Take userid to be added "/
 '| xlate',

'| l1:', /" Add this user to table "/
'\ d2:', /" Tertiary of deal: DELs "/

 '| copy',
'| spec w2 of substr 9-" 1', /" Take userid to be deleted "/

 '| xlate',
'| l1:', /" Delete from table "/

In this example you may have missed the part that maintains the disk file AUTH USERS.
Adding users to that file can be done by just appending lines to the file, but deleting
userids does not work that way. A simple solution for this is to add the count option that
will output the entire reference table with the number of hits when the lookup stage ter-
minates (we don't need the number of hits, but otherwise lookup would only output the
unmatched reference records). When the userid is forced off the system lookup would not
be able to write those records. If this is a concern you could maintain a seperate file with
users to be removed from the table and process that next time the pipeline is started.

Note: Unfortunately lookup does not release the storage for a reference record when that
record is deleted from the table by passing its key to the quarternary input. This makes
the simple approach outlined here a bit unpractical for large amounts of data (although I
have built reference tables of several Megabytes). I will show possible solutions for that
in the remainder of this paper.

The Other Output Streams
We have now seen the four input streams for lookup, but in order to fully support
updates of the reference table three extra output streams were added to lookup.

Quarternary Output - Deleted Master Records
The master records that are removed from the reference table (by passing their key to the
quarternary input) are written to this output stream according to the same rules that cause
reference records to be written to the tertiary output when lookup terminates.

So when count is specified each deleted master record is written to this output stream,
prefixed by its count value. When count is not specified the record will only be written
if it was not referenced by a detail record.

These records may originate from the secondary or tertiary input of lookup.

10

Note that the reference record is written to the quarternary output immediately when it is
being removed from the table. Only the records that are still left in the reference table
when lookup terminates will appear at the tertiary output.

The Quinary Output - Duplicate Masters
When allmasters is not specified, any duplicate master records (i.e. master records with
the same key value) are not stored in the table. When the fifth output stream is defined
and connected these rejected duplicate master records are written to this fifth output
stream.

The Senary Output - Unmatched Deletes
When there is no reference record to delete for the key passed to the fourth input of
lookup this delete is rejected, and the record is written to the sixth output stream, when
connected.

What do you do with it?
Once you have mastered lookup you will find lots of places in your pipelines where
lookup can simplify the plumbing. Often it can replace a pipeline that required the entire
stream to be buffered (or sorted before use). This makes lookup very useful in servers
that perform real-time processing of their input.

Feedback loop (autoadd)
In many cases you will need to use some kind of feedback in the pipeline that uses
lookup. The first example of such a feedback is when you write your own autoadd
implementation. To do that you connect the secondary output (the unmatched detail
records) with the tertiary input (reference to be added).

parse arg parm
'callpipe (end \ name RMHLUP.DOC:772)',
 '\ ":',

'| x: lookup' parm ,
 '| ":',

'\ x:', /" Take unmatch details "/
'| f: fanout stop anyeof',
'| copy ',
'| x:', /" and pass a new masters "/

 '\ f:',
 '| ".output.1:'

Feedback loop (once)
When you know that you will only have a single detail record for each master record, it
can be wise to delete the reference record from the table once it has matched a detail
record (e.g. when the key is not fully unique). To do this you need a feedback from the
primary output (the matched records) to the quarternary input (reference to be deleted).

parse arg rng .
'addpipe (end \ name RMHLUP.DOC:641)',

'\ ": ',
'| x: lookup' rng 'detail master', /" Both detail & master "/
'| d: deal stop anyeof', /" Separate detail & master "/
'| ":', /" Matched detail records "/

 '\ x:',
'| ".output.1:', /" Unmatched details "/
'\ ".input.1:', /" Masters to be added "/

 '| x:',
'\ d:', /" Matched master records "/

 '| copy',
'| x:' /" To quarternary input "/

 11

The advantage of such a feedback loop over the autoadd option is that it allows you to
modify the record before passing it to lookup as a new master record (e.g. to add a
sequence number). You probably should take care not to modify the key field (if you
make it a duplicate key the master would be written to the quarternary output again).

Feedback loop (replace)
Another feedback might be to just replace the reference record when a second master
record with the same key is received. Such a duplicate master record is normally rejected
by lookup so we can use the records that appear on the fifth output to delete the old
reference record and add the new one.

'callpipe (end \ name RMHLUP.DOC:661)',
'\ ": ',
'| o: not fanout stop anyeof',
'| take last', /" Find EoF on input "/
'| g: gate', /" .. to close the gate "/

 '\ o:',
'| x: lookup' arg(1),

 '| ":',
'\ x:', /" Secondary not connected "/
'\ ".input.1:', /" New masters to be added "/
'| a: fanintwo', /" Combine with feedback "/

 '| g:',
'| x:', /" To tertiary input "/
'\ d: fanin',
'| x:', /" Quarternary stream "/
'\ x:', /" Duplicate masters "/
'| copy', /" Consume the record "/
'| f: fanout',
'| d:', /" Delete the old master "/

 '\ f:',
'| a:' /" Add the new master "/

You will notice the fanout that provides two copies of the rejected master record. One
copy is passed to the fanin to delete the old master, the other is passed to fanintwo to
add it to the table. Because fanout strictly writes to its output streams in ascending
order, we can be sure the old record is deleted before the new one is added. The
fanintwo is needed to make sure the new key from the secondary input (that was rejected
before) is preferred over one that might be waiting on the primary input.

Determine the Length of a Run
The following problem was suggested in the PIPELINE CFORUM on IBMLINK. The
input stream contains (fixed length) records where part of the input record (say column
1.4) serves as a key. These records should be sorted such that the records with the most
common key appear first in the output stream. The input stream was not sorted in any
specific way.

The “classical” way to do this is to first sort the records on the key and then join all
records with a common key. The more common a key is, the longer the record now will
be. By prefixing these records with their length (addrdw cms) and sorting them again on
that length field (in descending order) the most popular keys appear first. When the ori-
ginal records are re-built the stream is sorted as requested.

Using lookup you can do this in a very elegant3 way.

3 Unfortunately this solution turns out to be more expensive than the one using sort and join, but I still think the example is
pretty neat.

12

 ...
'| f: not fanout',
'| x: lookup count 1.4 allmasters',
'\ x:', /" No secondary input / output "/
'\ f:', /" 3rd input: new masters "/
'| x:', /" 3rd output: masters & count "/
'| sort 1.1* d', /" Sort on count, descending "/
'| not chop 1*', /" And remove the count again "/

The solution uses the feature of lookup to add records to the reference table dynamically.
The allmaster makes lookup also retain the masters with duplicate keys. Because of not
fanout the record is added to the table before it is passed to the primary of lookup (to
match against the table). The count option records the hits per key, so all masters with
the same key carry the same count. When lookup terminates at EoF on the primary input
it will output the records from the reference table on the tertiary output (the only one I
have connected). They can be sorted on the count field to get the most common keys in
front. The not chop then removes this count field again. The example above can also be
very useful without the last two stages. In that case it produces a sorted list of the
records with the count of the key prefixed to each record with that key. This is like a sort
count without loosing the individual records. This means you can use the count field to
determine what to do with the individual records (e.g. report the individual records or just
report the count).

Compute Minidisk Starting Cylinder
You can use increment for more than just counting. When I had to compute a new allo-
cation for my mini disks I found the following pipeline very useful. The objective was to
compute the new starting cylinder for mini disks but keep them on the same volumes (i.e.
remove the gaps between them).

The MDISK statements in the CP directory are as follows:

MDISK cuu devtype start size volser mode rpass wpass mpass

The following pipeline takes the entire CP directory as its primary input.

'callpipe (end \ name RMHLUP.DOC:59*)',
'\ ": ',
'| m: zone w1 abbrev mdisk 2 anycase', /" Select MDISK stmts "/
'| spec w5 1.1* r 1-" nw ', /" Prefix with minidisk size "/
'| l: lookup autoadd',

'increment', /" Increment value on details "/
'trackcount', /" Provide running total "/
'w6', /" Match on volser "/

 'master detail',
'| spec 1.1* 1 read 1-" n', /" Count from master & detail "/
'| spec a: w1 - b: w6 -', /" Running total & size "/

'w2.3 1', /" Copy MDISK cuu & devtype "/
'print a-b+1 nw.6 ri', /" Computed start cyl "/
'w6-" nw', /" Copy size, volser, etc "/

'| f: faninany', /" Combine with unmodified "/
 '| ":',

'\ m: | f:' /" The non-MDISK statements "/

There are a few things in this example that may need some additional explanation. When
a detail record matches a reference record its increment value will already be added to the
count value for that reference record. In the context of this example: the running total
produced by TRACKCOUNT is the number of the last cylinder of this minidisk rather
than the first cylinder. By substracting the size from the running total (the a-b in spec) we
get the starting cylinder. The +1 is the correction to start allocations on cylinder 1 rather
than 0. If allocation should not be from cylinder 1 but something different for each volser
you could use SETCOUNT and pass the list of volsers to the secondary input of lookup
and prefix each of those records with the address of the first free cylinder on that volume.

 13

Such a list of volsers would also be used when you want to move the disks on some of
the volumes only.

The fact that this pipeline does not delay the input records is a big advantage. We can
now process the entire directory in a single pass without having to worry to get each
MDISK statement back in the right USER entry again.

If needed for further processing you could also specify the COUNT option to have
lookup output the address of the first free cylinder on its tertiary output (to be connected).
This would show you how far the volumes were filled by the new allocations.

Writing a Cache Stage
I have wanted to write a cache or look-aside buffer for CMS Pipelines for a long time.
Such a cache should provide a transparent way to store and retrieve the result of earlier
processing. The ability to dynamically add records to the reference table allowed me to
use lookup to do this.

Suppose you need to associate userids in your data with the name of the user, and that
the name of the user is retrieved using the CMS command namefind. To avoid using
namefind when the userid appears a second time you could first retrieve all names and
store them somewhere (e.g. in a lookup stage) but this is not attractive when your names
file contains a lot of users. What this following example does is retrieve the name when it
is first needed and then remember it such that it can be used for subsequent queries.

The first thing in the pipeline is the lookup that searches for the userid in its reference
table. If the userid is found the stored reference record can be written to the output of the
pipeline and we are done.

/" NAMEFIND REXX A Namefind with Memory "/
'callpipe (end \ name NAMEFIND.REXX:4)',

'\ ": ',
'| pad 8', /" Make it 8 chars "/
'| x: lookup 1.8 master ', /" Find in table "/
'| f: faninany ',

 '| ":',

If the userid is not in the reference table lookup will write the record to its secondary
output. This record can be used to build the namefind command. The output of this
command is used to create a new master record. Because the master records have both
the userid and the name, we use a fanout and a spec stage to build such a record from
the output of the namefind command.

'\ x:', /" If no match found "/
'| copy', /" Consume the record "/
'| u: fanout',
'| copy', /" Let the fanout run "/
'| s: spec 1.8 1', /" Combine the userid "/

'select 1 1-" n', /" .. with the name "/
'| b: fanout', /" One copy to "/
'| x:', /" .. be added to the table "/

 '\ u:',
'| spec ,NAMEFIND :USERID, 1', /" Make NAMEFIND command "/

'1-" nw ,:NAME, nw', /" .. to get the name "/
 '| command',

'| s:', /" Combine with userid again "/

Although the record was added to the reference table by the pipeline above, we still need
to write the record to the primary output of this pipeline. This way the pipeline using this
stage will not notice any difference whether the answer was obtained from the lookup or

14

by means of the namefind command (except of course in reduced consumption of CPU
cycles).

'\ b:', /" Another copy of user & name "/
'| f:' /" .. to the output "/

error: return rc " (rc ¬= 12)

Although this stage has two copy stages in it to consume the record, it is important to
realize that the subroutine pipeline does not delay the record.

Note: A correct implementation should also deal with the situation where the userid is
not found by namefind. In this example it will use the CMS error message instead of the
name or cause a stall (when the EMSG setting is OFF). To fix this you would probably
use the secondary output of command to check the return code of namefind.

A pipeline like this can be very useful when the process involved (in this case invoking
the namefind command) is more expensive than maintaining the cache. However, the
length of the key and the command for obtaining the result are contained in this pipeline
stage, so you would need to design such a pipeline again for every situation where you
need such a cache.

A generalized cache stage should make the actual resolving pipeline external to the cache
and remove the need for specifying key length in the cache.

 Generalized Cache
The resolving pipeline could be made external by specifying the processing pipeline as an
argument to the cache (as for example the totarget and appendstages do) but it is more
flexible to add an additional input and output stream as shown below.

... /" Input records "/
 'p: pipcache',

... /" Resolve the query "/
 'p:',

... /" Use the result "/

In this topology the actual processing (invoking the namefind command in the previous
example) is encapsulated between the primary output and secondary input of the cache.
The records enter this pipeline at the top and either pass through the processing stage, or
bypass that section, depending on whether the answer was in the cache or not.

To get the key length out of the cache stage I have stored the query (the userid in this
example) and the answer (the name of the user) in separate lookup stages. A fixed length
sequence number is now used to link the two lookup tables. This means we can connect
those two lookup stages as follows.

'addpipe (end \ name PIPCACHE.REXX)',
 '\ ".input.*:',

'| x1: lookup 1-" 11-" master', /" Find seqnr for this query "/
'| x2: lookup 1.1* master', /" Find the answer for seqnr "/
'| i: faninany',
'| not chop 1* ', /" Remove seqnr "/
'| ".output.1:', /" .. and to secondary output "/

When the query is not in the first lookup stage we need to obtain the answer (by running
the query through the resolving process) and then add the proper record to both tables.

The unmatched detail record comes out of the secondary output of the first lookup stage
(we start that with an empty table). The query is prefixed with the sequence number and
a fanout passes one copy of the record to the tertiary input of lookup to add it to the
reference table.

 15

'\ x1:', /" Query not in table "/
'| spec number 1.1* ri 1-" n', /" Assign seqnr "/
'| o1: fanout',
'| copy', /" Consume the record "/
'| x1:', /" Insert in table "/

 '\ x2:',

The other copy of the query with sequence number goes here. The sequence number is
separated from the query to let the pipeline between the primary output and the secondary
input obtain the answer. That answer is then passed back to a spec stage to combine it
with the sequence number again to add it to the reference table of the second lookup
stage.

 '\ o1:',
'| ch: chop 1*', /" Separate seqnr & query "/

 '| copy',
'| s: spec 1-" 1 select 1 1-" n',
'| o2: fanout', /" Seqnr & answer "/
'| x2:', /" To second lookup stage "/
'\ ch:', /" Just the query "/
'| ".output:', /" .. primary output "/
'\ ".input.1:', /" From secondary input "/
'| s:', /" Combine with seqnr "/

What remains now is to copy the answer (that was read from the secondary input) to the
secondary output. This makes every answer appear at the secondary output, whether it
was found in the table or not.

'\ o2: | i:'
error: return rc " (rc /= 12)

Note: The pipeline above uses addpipe to assure that End-of-File will propagate through
the pipeline.

The stage we now have is really general. The cache can be added to an existing pipeline
without affecting its function. When the process for obtaining the answer is expensive and
the same query is passed more than once, it might be useful to use the cache.

The cache presented here retains all query and answer combinations, there is no cleanup
process involved that will remove entries from the tables when they are not needed
anymore. This may be acceptable when the number of different records is limited by
some other factor, but for many production type pipelines this may be a problem.

Stopping and Restarting Lookup
As explained before the lookup stage does not release the storage when reference records
are deleted.

In this section I will show how to write a shell around lookup that allows lookup to be
be stopped and restarted in a transparent4 way to reload the reference table.

If the pipeline containing lookup needs to be restarted several times, the obvious solution
is to have a sipping pipeline in a loop.

4 Transparent here means that the process outside this stage does not have to know about the stopping and restarting. Records
should flow just like when the lookup was not stopped.

16

signal on error
do forever
'peekto' /" Already End-of-File? "/
'callpipe (end \ name RMHLUP.DOC:829)',

'\ fg: fanin ',
'| g: gate ',
'\ ": ',
'| g: ',
'| x: lookup ...'

 ...
end
error: return rc " (rc /= 12)

The pipeline above contains a gate that will break the primary input of lookup when it is
triggered. When lookup receives End-of-File on the primary input it will terminate. Since
the trigger for gate will need to come out of the pipeline, an additional fanin stage is
used to allow for a connection upwards to the primary input of gate.

When lookup terminates it will dump all remaining reference records to the tertiary
output (provided we have used the count option). When the callpipe is invoked again in
the next pass of the REXX loop we need to pass these reference records (or some of
them) to the secondary input of lookup. This means that we need a mechanism to hold
the records between the two invocations of callpipe. It would be possible to use a REXX
array for that (using the stem stage) but the overhead of that is pretty much. A very
elegant solution offered by the Piper is to use buffer 1 in an affixed pipeline.

An affixed pipeline is one that takes its input from an output of the stage that issues the
addpipe and that feeds its output into an input of that stage.

'addstream both buff'
'addpipe (end \ name RMHLUP.DOC:86*)',

'\ ".output.buff: ',
'| buffer 1 //',

 '| ".input.buff:'

In its basic form buffer will read all records until End-of-File and then write them to its
output. The optional numeric parameter for buffer is used to specify that buffer should
read up to a null record and then output that number of copies (in this case 1) to the
output.

By using buffer 1 in an affixed pipeline we have a way to store the records between two
callpipe calls. The null string specified on buffer causes a null record to be written
between two buffers, so we know when lookup should stop reading reference records.

So writing the records into the buffer goes like this:

 ...
'| append strliteral ', /" Append a null record "/
'| ".output.buff:' /" .. and write to buffer "/

Reading the records from the buffer (in the next cycle) is done like this:

'\ ".input.buff:', /" Read from buffer "/
'| t: totarget nlocate 1', /" .. up to null record "/

 ...
'\ t:', /" Take the null record "/
'| drop' /" .. and read that too "/

The null record that was written between two buffers must be read as well, since that will
free the buffer again for reading another buffer of data.

 17

We now need to run a pipeline that is slightly different during the first pass of the loop.
An easy way to do that is to use a REXX variable to hold part of the pipeline specifica-
tion.

refs = '".input.1:'
pass = *
do forever
 'peekto'
pass = pass + 1
'callpipe (end \ name RMHLUP.DOC:968)',

'\ ": ',
'| l: lookup ',

 ...
'\' refs, /" Initial reference records "/

 '| l:',
 ...
if pass = 1 then refs = , /" Reference records for "/

' ".input.buff:', /" all remaining passes "/
'| uptoand nlocate 1', /" Including null record "/
'| drop last' /" .. and remove the null "/

end

Normal REXX processing will substitute the variable with its current value when the host
command is composed. Thus, in the first pass the master records are read from the sec-
ondary input (*.input.1:), while in later passes they are read from the output of the
affixed pipeline (*.input.buff:).

Note: The uptoand stage above is a little pipeline that selects the records up to and
including the specified target.

'addpipe (end \ name UpToAnd.REXX)',
'\ ": ',
'| t: totarget' arg(1), /" Select up to the target "/
'| f: faninany ',
'| ": ',
'\ t: ',
'| take 1 ', /" And take the target too "/

 '| f:'

You may want to have the lookup dump the contents of the reference table to the tertiary
output during the last pass of the loop, to provide a fully transparent behaviour. Since we
normally cannot predict which will be the last pass the simplest solution is to run an
additional callpipe after the loop has ended to output the contents of the reference table.

do forever
 'peekto'
if rc /= * then leave
... one cycle

end
'callpipe (end \ name RMHLUP.DOC:1*15)',

'\ ".input.buff:', /" Read all from buffer "/
'| ".output.2:' /" To my tertiary output "/

There is one thing still missing in the infrastructure of this pipeline. We need something
to trigger gate that will cause the pipeline to terminate so we can start another pass. Since
we want to restart the lookup to free storage occupied by deleted reference records,
starting a new cycle is only useful when we have deleted a number of reference records.

'\ ".input.3:', /" Quarternary input: deletes "/
'| o3: fanout',
'| drop 1**', /" Allow for 1** deletes "/
'| take', /" .. then take the next "/
'| fg:', /" .. and trigger the gate "/

 '\ o3:',
'| l:' /" To quarternary of lookup "/

18

The number 100 in the pipeline above is in fact the tuning of the whole mechanism. This
is where storage (occupied by reference records that were deleted) is being traded against
CPU cycles (to reload the remaining reference records). You will probably need to have
additional knowledge about your data to determine when to flush the lookup stage. If the
size of the master records varies a lot you might consider to specify the count option and
use the quarternary output to actually count the number of bytes that would be released
when the lookup stage is recycled.

You could probably write a generic “Self Cleaning” shell for lookup using the techniques
introduced above (this was the reason I asked John Hartmann for the setcount option so I
could carry the count value forward from one cycle to the other and provide an overall
counter).

A Cache with LRU cleanup
To perform a cleanup of the cache shown before we would need to pass the key of the
record to the quarternary input stream of both lookup stages. The big problem here is of
course to determine which keys should be deleted from the table while lookup is running.
Because lookup currently does not free the storage for reference records when they are
deleted, I felt it was rather useless to do such a cleanup. Instead, I have chosen to just
restart the pipeline containing the lookup now and then and reload only part of the refer-
ence records in the next invocation of lookup.

In order to keep track of what reference records were used, I will use the counter in both
lookup stages (since the pair of lookup stages needs to contain the same reference records
I can use two counters). The counter in the first lookup stage will be used just to record
whether the reference record was used in the last cycle; the other one will count the
number of cycles that have passed since this record was last used (so we add 1 to it for
each cycle in which the first lookup has a count of 0).

You will find the full cache with Least Recently Used implementation in the appendix of
this paper.

 Conclusion
I hope this paper shows you why I feel lookup really is the Plumber's Swiss Army Knife.
Often the lookup can replace a pipeline that would normally require the records to be all
available before processing can begin; this makes lookup very useful for writing servers
that process the records in real time.

For “normal” pipelines lookup will in many cases reduce the amount of coding you have
to do. In most situations you will find such a simple pipeline run faster than without
using lookup.

 19

Appendix: Cache with LRU Cleanup
The following stage implements a cache similar to the other one in this paper, but with an
additional process to remove entries from the cache to limit the amount of storage being
consumed.

The normal way to remove unwanted reference records from a lookup stage is to present
the key of the record at the quarternary input of the stage. Unfortunately CMS Pipelines
does not free up the storage when a master record is being deleted, so this would not
limit the storage requirements for the cache. This restriction makes it necessary to restart
the lookup stages now and then to reload their reference tables and thus prevent fragmen-
tation of free storage.

Note: A future version of CMS Pipelines is likely to have this problem fixed. When
such a version is available it would be possible to implement a LRU algorithm by
deleting individual reference records from the table. It is however not unlikely that such a
version would include the LRU algorithm as built-in option of lookup.

To stop and restart the lookup stages means that the callpipe containing these stages
should be in a REXX loop. The overhead of restarting the lookup for each reference
record to be deleted would be rather heavy, so we will need some extra parameters to
tune the stage.

arg buffkeep buffdel .
if buffkeep = '' then buffkeep = 1**
if buffdel = '' then buffdel = buffkeep%1*

Since we would not get savings from deleting the reference records until the lookup is
restarted, we can postpone removing these reference records until the lookup is restarted.
When the reference records are dumped by lookup we will need to filter some least
recently used records out (by default 10% of the cache size) before loading them in the
next invocation of lookup.

To show the statistics of the cache we define an extra output where one line per cycle
will be written, when defined.

'maxstream output'
if rc >= 2 then stats = '".output.2:'
else stats = 'hole'

As before, we will unload the reference (the master records) into a buffer in an affixed
pipeline at the end of each cycle. In the next cycle, the reference will be reloaded from
that affixed pipeline, with the least recently used records being discarded during the
reloading.

'addstream both buff'
'addpipe (end \ name PIPRMH*9.DOC:211)',

'\ ".output.buff: ',
'| buffer 1 //',

 '| ".input.buff:'

Two REXX variables refs1 and refs2 will hold the pipeline segment that feeds the refer-
ence records into each of the lookup stages. At the start of the REXX loop we set them
to hole so we begin with an empty reference table.

signal on error
refs1 = 'hole'; refs2 = 'hole'
buffadd = buffkeep /" Let cache fill first "/
cntr = *
do forever
 'peekto inp'
call cycle /" Sip until we need to flush "/

20

After the first cycle we need to define the two REXX variables to hold the pipeline
segment that reads the current reference records from the buffer in the affixed pipeline.
The affixed pipeline will also output a null record after each set of reference records, so
we can use a totarget nlocate 1 to read up to the null record. The buffer will contain the
reference records of both tables pairwise, as will be shown later. Therefore a deal can be
used to guide the reference records to the correct lookup.

Note: The first lookup uses the count option to keep track of the reference records used
during that cycle. Since these counters need to start at zero we remove the count from the
previous cycle with a not chop 10.

if refs1 = 'hole' then /" Is this the first pass? "/
 do

refs1 = ,
' ".input.buff:', /" From affixed pipeline "/
'| t: totarget nlocate 1', /" Stop at first null record "/
'| dx: not deal', /" Spread over two streams "/
'| not chop 1*' /" Remove count from detail "/

The null record needs to be consumed to make sure buffer will be ready to read the next
block of records when the sipping callpipe is being flushed.

refs2 = ,
' t:', /" The null record "/
'| take', /" .. remove it "/

 '| hole',
'\ dx:' /" Master copy for 2nd lookup "/

The REXX variable buffadd holds the number of records that can be added to the cache
before we need to flush it. For any cylcle other than the first this value should be iden-
tical to the number of records we removed from the cache.

buffadd = buffdel /" Add as much as we delete "/
 end
end
error: return rc " (rc ¬= 12)

Following is the callpipe that processes a number of detail records until buffadd new
records have been added to the cache. When that happens the gate cuts the primary input
and makes the callpipe terminate so we can flush the cache.

The second gate is to detect End-of-File on the primary input (either because it was cut
by the first gate or because we ran out of detail records). This gate will be used to close
the secondary input of the cache.

Cycle:
'callpipe (end \ name PIPRMH*9.DOC:2*5)',

'\ fgat: fanin ', /" Feed trigger to the gate "/
'| g: gate', /" Quit after buffadd records "/
'\ ".input.*:', /" Detail records from caller "/
'| g:', /" Sever after buffadd records "/
'| ox: not fanout', /" A copy to 2nd, then to 1st "/
'| take last', /" Get the last record "/
'| gx: gate', /" .. and sever secondary input "/
'\ ox:', /" Input from caller again "/

Next is the pair of lookup stages again. The first lookup uses the count option to see
whether the reference record was matched during this cycle.

'| l1: lookup count 1-" 11-" master ',

The second lookup will use the count field to keep track of the number of cycles this
reference record was not referenced. The increment option defines the first 10 columns of
the detail record to have the increment for the counter. This is set to 0 so we don't
modify the count of the masters during the cycle. The setcount causes the initial value

 21

for the counter to be taken from the first 10 columns of the reference record when it is
fed into the secondary or tertiary input stream.

Note: Since we don't really count, it would have been possible to use part of the record
itself for the counter. I have not done that because it complicates the ranges a bit.

'| spec ,*, 1* 1-" n', /" An increment of * "/
'| l2: lookup setcount increment count 1.1* master',
'| not chop 1*', /" Remove the seq nr "/
'| f2: faninany', /" Resolved & answered "/
'| ".output.1:', /" Output the answers "/

The REXX variable refs1 is used to connect the pipeline for the initial reference records.

 '\' refs1,
'| l1:', /" Detail not found "/

The records that come out of the secondary output of lookup are the unmatched detail
records. Using the number from option we assign a sequence number that is used as the
key to link the records of both lookup stages.

By using the REXX variable cntr we make sure the number is unique. We also will use
this number to determine the age of a record. This is important for fine tuning of the
flushing algorithm.

'| spec number from' cntr+1 '1.1* ri 1-" n',
'| f1: fanout stop anyeof', /" Divert copy for calculation "/
'| copy', /" Unblock the fanout "/
'| l1:', /" Add to first lookup "/

The tertiary output is where the master records from the first lookup are dumped when
the pipeline terminates. The count option gives the number of hits for that master in the
first 10 colums. Since we only care about whether the master was referenced or not, we
can reduce the count to either 0 or -1 (the -1 for when the record was not referenced).
That number will then be used to update the counter for the records in the second lookup.

The section below uses another lookup during termination of the pipeline5. The reference
tables of the two lookup stages above are fed into this third lookup to be able to update
the counters. There will be one detail for each master, we need the lookup since the
reference tables are sorted differently in both.

The reference records of the second lookup have the time-to-live value in column 1.10.
This is used as the initial value because of the setcount option. The specs stage prefixes
the detail record with either 0 or -1; so we decrement the time-to-live value by 1 when
the record was not referenced during this pass.

'| spec c: 1.1* - 11-" 11',
'print c>*?*:-1 1.1* ri',

'| l3: lookup trackcount setcount increment 1.1* master detail',

The trackcount causes lookup to prefix the master record with the current count value.
The specs below copies this value to the detail record as well so we can sort the whole
stream on that modified time-to-live value.

'| spec 1-" 1 write 1.1* 1 read 1-" n',
'| sort 1.2*', /" Least used ones first "/

This means that we can now drop the required number of records to make some space in
the cache. The null string is appended to signal the end of the buffer.

5 This could have been done as well by sorting both streams and use a specs stage to compute the modified time-to-live. Since
this is a paper about lookup I felt this solution was appropriate.

22

'| drop' buffdel"2, /" And discard some "/
'| append strliteral //', /" A null record "/
'| ".output.buff:', /" To affixed buffer "/

The initial reference table of the second lookup is filled as defined in the REXX variable
refs2.

 '\' refs2,
'| l2:', /" 2nd input: reference "/

Another copy of the new record is passed to here. It is already prefixed by a sequence
number. An initial time-to-live value is computed. By using buffkeep/buffdel it will move
down in the LRU table by the same percentage as what we flush out of the cache at each
cycle.

'\ f1:', /" Copy record not in tables "/
'| nr: chop 1*', /" Keep the number here "/

 '| copy',
'| s: spec ,'buffkeep%buffdel', 1.1* r 1.1* n',

'select 1 1-" n', /" .. and add detail record "/
'| l2:', /" 3rd input: new masters "/
, /" 3rd output: masters & count "/
'| l3:', /" 2nd input: initial masters "/

Note: The pipeline segment above connects to the secondary input of the third lookup
stage. No records flow into that lookup until the other two terminate and start dumping
their master records.

The cache miss record is output to the primary output of the cache where it will be read
by the external pipeline that computes the value that was not found in the cache. We
need the gate to propage End-of-File correctly.

'\ nr:', /" The cache miss record "/
'| oo: fanout', /" Divert one copy to gate "/
'| ".output:', /" To primary output where the "/
, /" other pipe resolves it "/

 '\ oo:',
'| take last', /" Wait until all processed "/
'| og: gate', /" Sever the secondary input "/
'\ ".input.1:', /" Read the resolved value "/
'| og:', /" Allow to be severed "/
'| gx:', /" Allow to be severed "/
'| f3: not fanout', /" One copy of the record to "/
'| s:', /" feed into the 2nd lookup "/

An extra copy of the output record is written to the secondary output of the cache (where
all output records appear, whether they were found in the cache or not).

'\ f3:', /" Another copy to be written "/
'| f2:', /" to the secondary output "/

A final copy of the newly added records is used to keep track of the cache filling up.
Dropping the first buffadd records makes the gate trigger when the cache is full. The
REXX variable cntr is then updated with the last sequence number.

 23

 '\ f1:',
'| drop' buffadd,
'| take 1',
'| chop 1*', /" Only keep the sequence nr "/
'| var cntr', /" .. and save it "/

 '| copy',
 '| fgat:'

return

error: return rc " (rc ¬= 12)

Note: Depending on the chosen tuning parameters the actual cache algorithm (the
reloading of the reference table) can become pretty expensive. One factor that affects the
overhead of the stage is the buffdel parameter. It should probably not be set below 10%
of the buffer size since LRU is a rough assumption anyway about what should remain in
the cache.

24

	Introduction
	The Runtime Library
	The Original Use for Lookup
	Specifying the Matched Records to be written
	The Input Ranges
	Replace a Cascade of Locates
	Combine Tasks in a Single Lookup
	Counting the Number of References
	Updating the Reference Table
	The AUTOADD option

	The Tertiary Input Stream - Adding Masters
	The Quarternary Input - Remove Masters
	The Other Output Streams
	What do you do with it?
	Feedback loop (autoadd)
	Feedback loop (once)
	Feedback loop (replace)
	Determine the Length of a Run
	Compute Minidisk Starting Cylinder

	Writing a Cache Stage
	Generalized Cache
	Stopping and Restarting Lookup
	A Cache with LRU cleanup
	Conclusion
	Appendix: Cache with LRU Cleanup

