
 

CMS/TSO Pipelines ���

 

PIPE Command Programming Interface
1.1.12

 
 
 
 jh95-0068-03



 



CMS/TSO Pipelines ���

PIPE Command Programming Interface
1.1.12

 
 
 
 jh95-0068-03



  
 

! Fourth Edition, May 2010.

! This edition applies to CMS/TSO Pipelines level 1.1.12/04.

Third Edition, March 1998. This edition applies to CMS/TSO Pipelines level 1.1.10/24.

Minor editorial changes and clarifications, February 1997, for CMS/TSO Pipelines level 1.1.10/13.

First edition, November 1995. This book applies to level 1.1.9 of the CMS/TSO Pipelines Service Offering and to subsequent levels. Both
VM/ESA Version 2 Release 1 Modification 0 and BatchPipes/MVS Release 2 contain this level, but neither product supports this specification.

 Copyright International Business Machines Corporation 1995, 2010. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.



  Table of Contents
 

 Contents

Part 1. Issuing Pipelines Programmatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Issuing Pipeline Requests with Parameter Tokens . . . . . . . . . . .  2
Getting to the Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

CMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
MVS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Parameter Token List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
Parameter Token Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
PIPTPARM—Generate Parameter Token List . . . . . . . . . . . . . . . . . . . . .  6

Chapter 2. Encoded Pipeline Specifications . . . . . . . . . . . . . . . . . . . . . .  7
Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PIPSCBLK—Generate Encoded Pipeline Specification . . . . . . . . . . . . . . . .  8
PIPSCSTG—Generate Part of an Encoded Pipeline Specification . . . . . . . . . .  10

Chapter 3. Specifying Addresses and Lengths in Control Blocks . . . . . . . . . .  14
Using S-type References on CMS . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Syntax Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

! Part 2. Filter Packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

! Chapter 4. Overview of Filter Packages . . . . . . . . . . . . . . . . . . . . . . . .  18
! Installation and Retraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
! Interface Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
! PIPNXF, DMSPFP, and FPLNXF . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
! FPLNXG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
! FPLNXH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
! Summary of Interface Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

! Chapter 5. Entry Point Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
! Macros to Assemble an Entry Point Table . . . . . . . . . . . . . . . . . . . . . . . .  20
! PIPEPT—Open an Entry Point Table . . . . . . . . . . . . . . . . . . . . . . . . . .  20
! PIPEPTEN—Define an Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
! PIPEPTED—End of Entry Point Table . . . . . . . . . . . . . . . . . . . . . . . . .  21
! Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

! Chapter 6. Message Text Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
! FPLGMS—Generate Message Text Object Module . . . . . . . . . . . . . . . . . . .  22
! Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

! Chapter 7. Generating an Object Module Containing REXX Stages . . . . . . . .  23
! FPLGRXTX—Generate REXX Filters Object Module . . . . . . . . . . . . . . . . . .  23
! Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

! Chapter 8. User Written Functions for spec . . . . . . . . . . . . . . . . . . . . . .  25
! Defining Functions to CMS/TSO Pipelines . . . . . . . . . . . . . . . . . . . . . . . .  25
! FPLFUNTB—Function Table Header . . . . . . . . . . . . . . . . . . . . . . . . .  25

 Copyright IBM Corp. 1995, 2010  iii



 Table of Contents  
 

! FPLFUNTE—Function Table Entry . . . . . . . . . . . . . . . . . . . . . . . . . .  26
! FPLFUNTN—End of Function Table . . . . . . . . . . . . . . . . . . . . . . . . .  27
! Example of REXX Function Definitions . . . . . . . . . . . . . . . . . . . . . . . .  27
! Function Entry Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
! Format of the Result and an Argument . . . . . . . . . . . . . . . . . . . . . . . . . .  28
! The Sign Nibble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
! Data Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
! CMS/TSO Pipelines Subroutines to Support Functions . . . . . . . . . . . . . . . . . .  30
! Supporting Entry Points You Can PIPCALL . . . . . . . . . . . . . . . . . . . . . .  30
! Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

! Chapter 9. Generating the Filter Package Module . . . . . . . . . . . . . . . . . .  32

Part 3. Miscellaneous Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 10. CMS/TSO Pipelines User Words . . . . . . . . . . . . . . . . . . . . . .  34

Part 4. Copipes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 11. Overview of Copipes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

Chapter 12. Copipes and Pipeline Fittings . . . . . . . . . . . . . . . . . . . . . . .  40
Starting a Copipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Resuming a Copipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Terminating a Copipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Using Stages that Wait for External Events . . . . . . . . . . . . . . . . . . . . . .  44

Using Fitting Stages to Inject and Extract Records from the Pipeline . . . . . . . . . .  44
Fitting States and Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Be Careful!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
PIPFTPRM—Generate Copipe Communications Area . . . . . . . . . . . . . . . .  47
PIPFTRPL—Generate Fitting Request Parameter List . . . . . . . . . . . . . . . . .  48
PIPRESUM—Resume the Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Chapter 13. Copipe Data Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
PIPFTPRM—Communications Area  . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PIPFTRPL—Fitting Request Parameter List . . . . . . . . . . . . . . . . . . . . . .  51

Part 5. Porting CMS/TSO Pipelines to other Environments . . . . . . . . . . . . . . . . . . . . 53

Chapter 14. System Services Vector . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Addressing Mode, Supervisor State, Enablement . . . . . . . . . . . . . . . . . . . . .  55
Anchors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Register Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Task Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

TaskID—Return Process and Thread ID . . . . . . . . . . . . . . . . . . . . . . . .  56
Suspend—Suspend the Running Task . . . . . . . . . . . . . . . . . . . . . . . . .  56
Resume—Resume a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

iv CMS/TSO Pipelines: Programming Interface.  



  Table of Contents
 

Storage Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Below—Allocate Storage Below the 16M Line . . . . . . . . . . . . . . . . . . . .  58
Above—Allocate Storage Anywhere . . . . . . . . . . . . . . . . . . . . . . . . . .  58
Release—Return Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Extend—Try to Extend an Allocated Area . . . . . . . . . . . . . . . . . . . . . . .  59
Persistent—Allocate Persistent Storage Anywhere . . . . . . . . . . . . . . . . . . .  59
ReleasePersistent—Return Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Resource Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Enqueue—Serialise Access to a Global Area . . . . . . . . . . . . . . . . . . . . .  59
Dequeue—Release Exclusive Access to a Global Area . . . . . . . . . . . . . . . .  60

Exit Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Timer—Set TOD Clock Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Programming Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Enqueue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Storage Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Suspend and Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Global Anchor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

The CMS Pipelines PIPMOD Command . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Merging the PIPMOD INSTALL Token . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

FPLSYSSV—Build a System Services Vector . . . . . . . . . . . . . . . . . . . . .  63

Part 6. Sample Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 15. Hello World!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 16. Sample spec Function Package . . . . . . . . . . . . . . . . . . . . . .  67
Generating the Filter Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Programming Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 15. Hello World!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 16. Sample spec Function Package . . . . . . . . . . . . . . . . . . . . . .  67
Generating the Filter Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Programming Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

  Contents v



 Table of Contents  
 

vi CMS/TSO Pipelines: Programming Interface.  



  
 

Part 1. Issuing Pipelines Programmatically

This part of the book describes ways to define and
issue pipelines that are defined by control blocks and
parameter lists rather than strings, as in the PIPE
command.

 Copyright IBM Corp. 1995, 2010  1



 Issuing Pipeline Requests  
 

Chapter 1. Issuing Pipeline Requests with Parameter Tokens

This chapter describes the ways you can call CMS/TSO Pipelines from an application
program. We describe first how you get the request to CMS/TSO Pipelines; the mechanics
of this depend on the operating system you are using. Then we describe the common
format of the parameters that you pass to CMS/TSO Pipelines.

Getting to the Pipeline
The way to issue the PIPE command depends on the operating system you are using; and
possibly also on the particular programming language. The following sections describe the
contents of the parameter list that you must supply.

The objective is to pass a list of parameter tokens to the PIPE command.

 CMS
On CMS, you must tunnel the parameter tokens through CMS command processing. This is
done by prefixing the list of parameter tokens with a doubleword that contains the PIPE

command; thus, the list of parameter tokens becomes part of the CMS tokenised parameter
list.

The parameter list is passed in general register 1. It must be list of tokens, each eight
bytes long and aligned on a fullword boundary (these are CMS tokens). The first token
contains the PIPE command. The remainder of the parameter list contains the token list
described in “Parameter Token List” on page 4.

You can choose between CMSCALL or a direct branch to issue the pipeline.

Figure 1. CMS Parameter List

┌─────┐
│GPR 1│────────────────────────────�┌──────────┐
└─────┘ │PIPE │
 ├──────────┤
 │ │
 │token │
 │list │
 │ │
 │ │
 │ │
 └──────────┘

Using CMSCALL to Invoke CMS Pipelines
Use CMSCALL CALLTYP=PROGRAM,COPY=NO to invoke CMS Pipelines through SVC-assisted
linkage. If you wish to use general register zero as a base for addresses of the format
described in Chapter 3, “Specifying Addresses and Lengths in Control Blocks” on
page 14, you must instead use CMSCALL CALLTYP=EPLIST,COPY=NO.

2  Copyright IBM Corp. 1995, 2010



  Issuing Pipeline Requests
 

Using Direct Branch to Invoke CMS Pipelines
Except when you wish to run the pipeline disabled, there are no compelling reasons to
branch directly to CMS Pipelines.

But if you do, these are the steps to perform:

� Find the SCBLOCK describing the PIPE nucleus extension. (The NUCXMAP command
can do this; or you can issue the NUCEXT macro to obtain the address.) If there is no
PIPE nucleus extension, you must issue a dummy PIPE command to make the bootstrap
install the main pipeline module (issue “pipe hole”). This process cannot be prevented
from enabling; it is best that you issue the dummy PIPE command before you invoke
the program that must run disabled. Do not try to emulate the process that installs the
CMS Pipelines code and activates it as this process is likely to change over time.

� Load the address of the parameter list into general register 1; load the SCBLOCK

address into general register 2.

� Ensure that general register 13 points to a CMS user save area and that the flags and
call type are set to indicate that the call is a program call, an SCBLOCK is present, and
that there is no extended parameter list. That is, the user save area must be twenty-
four fullwords followed by the eight bytes of flags and call type.

� Load the address of the entry point from the SCBLOCK and issue the BALR instruction
to branch to it. The addressing mode must be 31-bit.

 MVS
On z/OS, you have the choice of LINK; or LOAD, branch, and DELETE. The entry point
name is PIPE (which is an alias for FPLPIPE).

You must use LOAD when you intend to run a copipe; otherwise the PIPE module could be
unloaded from storage and you would be branching wildly when you resume the pipeline.

Pass in general register 1 a parameter list that has one entry. The parameter must point to
the token list described in “Parameter Token List” on page 4.

The pointer must have the leftmost bit turned on to indicate a parameter list that has one
entry.

Thus, the parameter is a pointer to the parameter structure in C parlance. In PL/I you
would pass a pointer to the first element of the token list.

Figure 2. MVS Parameter List

┌─────┐
│GPR 1│───────┐
└─────┘ │
 

 ┌────────┐ ┌─────────┐
 │pointer │───────────�│token │
 └────────┘ │list │
 │ │
 │ │
 │ │
 └─────────┘

  Chapter 1. Issuing Pipeline Requests with Parameter Tokens 3



 Issuing Pipeline Requests  
 

Parameter Token List
A list of parameter tokens is used rather than the traditional list of addresses of individual
parameters. It was designed this way to allow the same parameter format to be used with
both CMS and z/OS.

The token list is normally generated using the PIPTPARM macro.

The generated token list contains three parts:

1. A doubleword that contains a “magic” token:

 DC X'FFFF',C' pipe' Two blanks

This marks the parameter list as one that cannot possibly be issued as a command or
addressed from REXX.

2. Tokens describing the actual requests. These tokens contain a fullword token type
followed by a variable number of argument words. There is always an odd number of
argument words to ensure that each token is aligned on a doubleword boundary
(assuming the entire structure is aligned on a doubleword boundary).

3. A doubleword “fence”, which contains all one bits.

Figure 8 on page 42 shows an example of a parameter token list.

Parameter Token Types
The supported token types are:

encd Provide the address of an encoded pipeline specification to be run. Refer to
Chapter 2, “Encoded Pipeline Specifications” on page 7 for a description of
this.

fitg Provide the address of the copipe communications area. This area is defined
with a PIPFTPRM macro. This token sets fitting mode. That is, it indicates that
the pipeline is to be run as a copipe. Normal mode (running the pipeline
specification to completion) is used if this token is omitted.

flag Specify switches.

The flag bits are, from right to left (bigendian bit numbering):

The leftmost bit (bit 0) is reserved for the sign; it will never be assigned.

msgl Provide a default message level. This is equivalent to runpipe MSGLEVEL. On
CMS, all of the rightmost sixteen bits can be set, in contrast to the pipeline
option which masks some of them off. On z/OS, the bits for X'3100' are
masked off, because they would cause an ABEND if they were enabled.

pipe Provide the address and length of a character string that contains the pipeline
specification to be run.

If the operand sublist does not contain a length operand, the length attribute of
the address operand is used as the length of the pipeline specification.

nospie 31 Do not issue SPIE macro instructions. (This is the least significant
bit.)

nostae 30 Do not issue STAE macro instructions.

nostax 29 Do not issue STAX macro instructions.

4 CMS/TSO Pipelines: Programming Interface.  



  Issuing Pipeline Requests
 

rc Provide the address of a fullword to receive the return code from the request.
Whether or not this token is specified, the return code will also be set in
general register 15. Because the rc token cannot be used to report problems
in the parameter list itself, the application should initialise the area pointed to
with a value that will indicate failure to the application. Once the token list
has been validated, the return code will be stored at the address contained in
the rc token whenever the pipeline returns.

sysv Provide the address of a vector of system services entry points. The vector is
described in Chapter 14, “System Services Vector” on page 54. This token is
optional; a default set of system services interface routines is supplied by
CMS/TSO Pipelines.

uwrd Provide the address to be stored as the user word for the pipeline set that will
be created for the request. See Chapter 10, “CMS/TSO Pipelines User Words”
on page 34.

You can specify tokens in any order. When a particular type of token is specified more
than once, the last instance takes precedence. A pipe token overrides a encd token and
vice versa. Note that the token identifier is a lower case character string. The formats of
the tokens are summarised in Figure 3.

Addresses and lengths are specified in a generalised form described in Chapter 3, “Speci-
fying Addresses and Lengths in Control Blocks” on page 14. If you do not build the
tokens with the macros supplied, you should refer to that chapter; it may save you some
work.

Figure 3. Parameter Token Summary

Type Word 1 Word 2 Word 3

encd Address of encoded pipe-
line specification.

fitg Address of communi-
cations area.

flag 32 flag bits.

msgl Message level, 32 bits.

pipe Address of pipeline
specification string.

Length of pipeline
specification string.

0

rc Address of word to
receive return code.

sysv Address of the system
services vector.

uwrd An anchor or the address
of a global control block
whence a device driver
can retrieve interface
information.

  Chapter 1. Issuing Pipeline Requests with Parameter Tokens 5



 PIPTPARM  
 

 Macro
Use the macro PIPTPARM to generate the list of parameter tokens.

PIPTPARM—Generate Parameter Token List
 

 ┌ ┐────────────────────
��──PIPTPARM─ ──┬ ┬─────── ───
 ┴(type,operand ...) ─�
 └ ┘─label─

�─ ──┬ ┬─────────────────────────────────────── ─�
  │ │┌ ┐─NO──────────────────────────

└ ┘──CMS= ──┴ ┴ ─YES─ ──┬ ┬────────────────────
 │ │┌ ┐─PIPE─

└ ┘──COMMAND= ──┴ ┴─word─

�─ ──┬ ┬───────────────── ─�

  │ │┌ ┐─YES─

└ ┘──FENCE= ──┴ ┴─NO──

Any addresses may be specified using the address notation that is defined in Chapter 3,
“Specifying Addresses and Lengths in Control Blocks” on page 14.

label The label is attached to the beginning of the parameter list. On z/OS,
this label should be used as the argument in the CALL macro instruction.

type The token type. It can be written in upper case or in lower case (but not
in mixed case). The macro will generate a lower case token in both
cases. The type can optionally be enclosed in quotes.

operand The form that is appropriate to the request. Refer to Chapter 3, “Speci-
fying Addresses and Lengths in Control Blocks” on page 14 for ways to
specify operand values. If fewer operands are supplied than are
required, the remaining slots are padded with zeros. Excessive operands
are quietly ignored. If the pipe token is specified with only one addi-
tional suboperand, the operand specifies the address of the pipeline
specification, and it is assumed that the length of the string can be deter-
mined from the length attribute of the specified symbol.

CMS Specify YES to generate the eight character CMS command as a prefix to
the parameter token list. The COMMAND= operand specifies the
command; the default is PIPE. If it is present, the label will be attached
to this string rather than to the list of tokens. Omit the CMS parameter
or specify NO to generate a token list that can be used on z/OS.

COMMAND Specify the command to issue. This operand has effect only when
CMS=YES is specified.

FENCE Specify NO to suppress the fence that terminates the parameter token list.
You would use this operand only if you intend to assemble further
tokens “by hand”. The token list must be concluded by a doubleword
fence of all one bits.

6 CMS/TSO Pipelines: Programming Interface.  



  Encoded Pipeline Specifications
 

Chapter 2. Encoded Pipeline Specifications

In contrast to the character string you normally issue as the argument to the PIPE

command, an encoded pipeline specification is a control block structure that does not rely
on special characters to delimit stages and pipelines.

The encoded pipeline specification is specified by one PIPSCBLK macro and several
PIPSCSTG macros.

The PIPSCBLK macro specifies the overall structure of the pipeline specification; it includes
the message level, options, and name of the pipeline specification. If a string represen-
tation of the encoded pipeline specification exists, it can also be specified; this will be
made available in an event record.

PIPSCSTG macros are used to specify stages of the pipeline, as well as connectors and
labels. The macro PIPSCSTG is also used to specify the beginning of a pipeline. When a
stage is specified, its entry point can be specified as an address or as a name. If you
specify an address, you can use stages that are local to your program.

A pipeline specification containing two pipelines could be written like this:

 PIPSCBLK TYPE=RUNPIPE

 PIPSCSTG TYPE=BEGIN

 PIPSCSTG TYPE=STAGE,LABEL=ABC,VERB=OSCAR

 PIPSCSTG TYPE=STAGE,VERB=CONSOLE

 PIPSCSTG TYPE=BEGIN

 PIPSCSTG TYPE=LABEL,LABEL=ABC

 PIPSCSTG TYPE=STAGE,VERB=CONSOLE

 PIPSCSTG TYPE=DONE

*

OSCAR DC C'oscar'

CONSOLE DC C'console'

The encoded pipeline specification can consist of more than one list of PIPSCSTG macros in
which case the STAGES= keyword of the PIPSCBLK macro lists the first PIPSCSTG macro in
each list. Each list is terminated by TYPE=DONE. The list can be broken at any point.

To run an encoded pipeline with a PIPSCBLK of type RUNPIPE, you should build a param-
eter token list (using the PIPTPARM macro). The parameter token list must include an
“encd” token that specifies the name in the label parameter of the PIPSCBLK macro.

Encoded pipelines with a type of ADDPIPE or CALLPIPE are invoked through the PIPMISC

macro with the ENCODED operand. The address of the PIPSCBLK macro expansion must be
in register 1 when the PIPMISC macro is issued.

 Copyright IBM Corp. 1995, 2010  7



 PIPSCBLK  
 

 Macros
Note:  The PIPSCBLK and PIPSCSTG macros are also used to define an encoded pipeline
specification to be added to the currently running pipeline set. For completeness, all
aspects of the macros are documented here even though some operands are not appropriate
to the initial pipeline specification of a pipeline set.

PIPSCBLK—Generate Encoded Pipeline Specification
 

��──PIPSCBLK──label─ ──┬ ┬────────────────────── ─�
 │ │┌ ┐─DSECT────

└ ┘──,TYPE= ──┼ ┼─CSECT────
 ├ ┤─INLINE───
 ├ ┤─ADDPIPE──
 ├ ┤─CALLPIPE─
 └ ┘─RUNPIPE──

�─ ──┬ ┬────────────────────── ──┬ ┬────────────────────────────── ─�
│ │┌ ┐─PIPSCAN─ └ ┘──,FLAG= ──┬ ┬─┤ Flag ├─────────

  └ ┘──,PREFIX ──┴ ┴─word──── │ │┌ ┐─,────────
└ ┘──( ───
 ┴─┤ Flag ├─ )

�─ ──┬ ┬────────────────────────────── ─�
  │ │┌ ┐─' '──────────────

└ ┘──,NAME= ──┴ ┴───┤ StringSpec ├─

�─ ──┬ ┬───────────────────────────────────────────────────── ─�
  │ │┌ ┐─(0,0)───────────────────────────────

└ ┘──,MSGLEVEL= ──┴ ┴──( ──┬ ┬──────────── , ──┬ ┬──────────── )
└ ┘─┤ A-type ├─ └ ┘─┤ A-type ├─

�─ ──┬ ┬───────────────────────────────── ─�
└ ┘──,ORIGPSPEC= ──┬ ┬────────────────

└ ┘─┤ StringSpec ├─

�─ ──┬ ┬────────────────────────────────── ─�

  │ │┌ ┐─*+8────────────────

└ ┘──,STAGES= ──┼ ┼─┤ A-type ├─────────
 │ │┌ ┐─,──────────

└ ┘──( ───
 ┴─┤ A-type ├─ )

Flag:
├─ ──┬ ┬─TRACE─── ─┤

  ├ ┤─LISTERR─
  ├ ┤─LISTRC──
  ├ ┤─STOP────
  └ ┘─LISTCMD─

label Specify the label for the encoded pipeline specification. Use this label in
the “encd” parameter token. Note that the label is not specified in
column one of the card, as is customary.

8 CMS/TSO Pipelines: Programming Interface.  



  PIPSCBLK
 

TYPE Specify the type of macro expansion desired.

DSECT Generate a dummy section defining the control block that
represents an encoded pipeline specification. This is the
default.

INLINE Like DSECT, but suppress generating a DSECT statement when
the expansion is included in some larger control block.

CSECT Generate the control block inline in a work area. DCs are
used; the fields are labelled.

ADDPIPE Generate a data area representing an encoded pipeline
specification that is to be added to the currently running set.
Except for the initial label, the contents of the data area have
no labels. The encoded pipeline specification must be issued
with the macro PIPMISC ENCODED. This operand is not valid
with the PIPE command.

CALLPIPE Generate a data area representing an encoded pipeline
specification that is to be run before the stage is resumed.
Except for the initial label, the contents of the data area have
no labels. The encoded pipeline specification must be issued
with the macro PIPMISC ENCODED. This operand is not valid
with the PIPE command.

RUNPIPE Generate a data area representing an encoded pipeline
specification that is to be run as the initial pipeline of a new
pipeline set. Except for the initial label, the contents of the
data area have no labels. This operand is not valid with the
PIPMISC macro.

PREFIX Specify the prefix to be used for labels that are generated when the type
is DSECT, CSECT, or INLINE.

The remaining operands are used only when the type is ADDPIPE, CALLPIPE, or RUNPIPE.

FLAG Specify global options. Note that multiple options are specified in a
comma separated sublist. The actual flags defined are prefixed the string
specified by the &PREFIX keyword (PIPSCAN by default). You can
specify TRACE, LISTERR, LISTRC, STOP, and LISTCMD.

NAME Specify the name string. The string can be enclosed in quotes; it can be
represented by the label on a character string constant; or it can be
specified as two suboperands containing the address and length of the
string, respectively.

MSGLEVEL Specify the bits to add and the bits to remove from the message level.
Only the bits for X'000017FF' can be turned on or off.

ORIGPSPEC Specify the original pipeline specification, if one exists. The string can
be enclosed in quotes; it can be represented by the label on a character
string constant; or it can be specified as two suboperands containing the
address and length of the string, respectively. This string is not used by
CMS/TSO Pipelines, but its contents are made available in an event
record, which can be used by the pipeline performance monitor known
as RITA and similar applications. Thus, you are encouraged to supply
this string if you have it; but do not spend time computing it.

STAGES Specify the address of one or more sets of PIPSCSTG macros. The
default assumes that the pipeline specification consists of one list of
PIPSCSTG macros that immediately follows the PIPSCBLK.

  Chapter 2. Encoded Pipeline Specifications 9



 PIPSCSTG  
 

PIPSCSTG—Generate Part of an Encoded Pipeline Specification
Depending on the type specified, this macro can generate a DSECT or the specification of
part of an encoded pipeline specification.

 Define DSECT 

┌ ┐──TYPE=DSECT
��──PIPSCSTG─ ──┬ ┬────────── ──┴ ┴──────────── ─�
 └ ┘ ─label──,─

�─ ──┬ ┬───────────────────────── ─�

  │ │┌ ┐─SCANSTAGE─

└ ┘──,PREFIX= ──┴ ┴─word──────

 Begin Pipeline 

��──PIPSCSTG─ ──┬ ┬────────── ──TYPE=BEGIN ─�

 └ ┘ ─label──,─

Note that the first PIPSCSTG macro of an encoded pipeline specification must be the begin
type; there are always as many begin items as there are pipelines in the pipeline
specification. (This is unlike the string representation of a pipeline specification, where the
initial end character is optional.)

label Specify the label to be associated with this item.

TYPE Specify DSECT (which is the default) to expand the DSECT describing the
four variants of this control block.

PREFIX Specify the prefix to be used for the labels in the DSECT.

label Specify the label to be associated with this item.

TYPE Specify BEGIN to specify the beginning of a pipeline.

10 CMS/TSO Pipelines: Programming Interface.  



  PIPSCSTG
 

 Define Stage 

��──PIPSCSTG─ ──┬ ┬────────── ──TYPE=STAGE ─�
 └ ┘ ─label──,─

�─ ──┬ ┬────────────────────────────── ─�
└ ┘──,FLAG= ──┬ ┬─┤ Flag ├─────────

 │ │┌ ┐─,────────
└ ┘──( ───
 ┴─┤ Flag ├─ )

�─ ──┬ ┬───────────────────────────────────────────────────── ─�
  │ │┌ ┐─(0,0)───────────────────────────────

└ ┘──,MSGLEVEL= ──┴ ┴──( ──┬ ┬──────────── , ──┬ ┬──────────── )
└ ┘─┤ A-type ├─ └ ┘─┤ A-type ├─

�─ ──┬ ┬───────────────────── ──┬ ┬──────────────────────── ─�
  │ │┌ ┐─' '──── │ │┌ ┐─0──────

└ ┘──,LABEL= ──┼ ┼─word─── └ ┘──,STREAMID= ──┼ ┼─number─
└ ┘──'word' ├ ┤─word───

└ ┘──'word'

�─ ──┬ ┬───────────────────────── ─�
  │ │┌ ┐─0──────────

└ ┘──,ENTRY= ──┴ ┴─┤ A-type ├─

�─ ──┬ ┬───────────────────────────────────────── ─�
  │ │┌ ┐─(0,0)───────────────────────

└ ┘──,VERB= ──┼ ┼─label───────────────────────
└ ┘──(─┤ A-type ├─,─┤ A-type ├─)

�─ ──┬ ┬───────────────────────────────────────── ─�

  │ │┌ ┐─(0,0)───────────────────────

└ ┘──,ARGS= ──┼ ┼─label───────────────────────
└ ┘──(─┤ A-type ├─,─┤ A-type ├─)

label Specify the label to be associated with this item.

TYPE Specify STAGE to specify a stage of a pipeline.

FLAG Specify local options. Note that multiple options are specified in a
comma separated sublist. The actual flags defined are prefixed PIPSCAN
to make them compatible with the default DSECT.

MSGLEVEL Specify the bits to add and the bits to remove from the message level.
Only the bits for X'000017FF' can be turned on or off.

LABEL Specify a pipeLabel if the stage is to have more streams than the
primary one being defined by this macro. This label is a label in the
sense of CMS/TSO Pipelines stages in that it specifies what a stage’s
higher numbered streams are connected to; but it is also a label in the
Assembler sense.

All pipeLabels in an Assembly must be unique, because they are
resolved at Assembly time rather than at run time. The label must be a
valid Assembler symbol (unlike a label in a pipeline specification string).

STREAMID Specify a stream identifier, if one is required or desired.

  Chapter 2. Encoded Pipeline Specifications 11



 PIPSCSTG  
 

 Label Reference 

��──PIPSCSTG─ ──┬ ┬──────── ──TYPE=LABEL ─,─ ──LABEL= ──┬ ┬─word─── ─�
└ ┘─label,─ └ ┘──'word'

�─ ──┬ ┬──────────────────────── ─�

  │ │┌ ┐─0──────

└ ┘──,STREAMID= ──┼ ┼─number─
 ├ ┤─word───

└ ┘──'word'

 Connector Reference 

��──PIPSCSTG─ ──┬ ┬──────── ──TYPE=CONNECTOR ─,──�
 └ ┘─label,─

�─ ──SIDE= ──┬ ┬────────────────────── ──┬ ┬──────────────────────── ─�
 ├ ┤─INPUT──────────────── │ │┌ ┐─0──────

├ ┤─(INPUT,CONDITIONAL)── └ ┘──,STREAMID= ──┼ ┼─number─
 ├ ┤─OUTPUT─────────────── ├ ┤─word───

└ ┘─(OUTPUT,CONDITIONAL)─ └ ┘──'word'

�─ ──┬ ┬──────────────────────────── ─�

  │ │┌ ┐─0──────

└ ┘──,STREAMNUMBER= ──┴ ┴─number─

ENTRY Specify this operand if you can resolve the program to run at assembly
time. Omit this operand if the pipeline specification parser must resolve
the program to run in the normal way. Specify the label on a PIPDESC

macro instruction that contains the program descriptor for the stage to
run, if the stage uses a program descriptor. If the stage does not use a
program descriptor (rather, it uses the original published interface),
specify the label of the first instruction in the program.

VERB Specify the name of the program to run. This can be specified as a
character string, the label on a character string, or a sublist containing
the address and the length of the character string.

ARGS Specify the argument string for the stage. This can be specified as a
character string, the label on a character string, or a sublist containing
the address and the length of the character string. This is often specified
by reference to the program’s register set.

label Specify the label to be associated with this item.

TYPE Specify LABEL to specify a label reference.

LABEL Specify the pipeLabel of the stage that is to have another set of input
and output streams.

STREAMID Specify a stream identifier, if one is required or desired.

label Specify the label to be associated with this item.

TYPE Specify CONNECTOR to specify a connector.

SIDE Specify INPUT or OUTPUT. Specify CONDITIONAL if you wish a stream
that is not defined to be treated as end-of-file.

STREAMID Specify a stream identifier if you wish to refer to the actual stream’s
identifier.

12 CMS/TSO Pipelines: Programming Interface.  



  PIPSCSTG
 

End of Segment 

��──PIPSCSTG─ ──TYPE=DONE ─�


This form generates a terminator to show the end of the segment being defined. It can be
after any other type of stage block.

STREAM-NUMBER Specify a number if you wish to refer to the number of the stream you
are connecting.

  Chapter 2. Encoded Pipeline Specifications 13



 Address and Length Parameters  
 

Chapter 3. Specifying Addresses and Lengths in Control Blocks

An address, a length, or an integer in general can be specified in one of these ways:

� As an offset from the fullword being assembled. This is indicated by “-*” at the end
of the parameter. The offset is limited to 8M in either direction (that is, it is a signed
24-bit number).

PIPELINE-*

This allows for relative address constants, which do not need relocation. Thus, the
parameter list can be moved at runtime without needing to be relocated; it can be
stored in a file and read in dynamically.

� As the number of a register in parentheses. The contents of the register at entry to
CMS/TSO Pipelines are substituted.

(4)

(R5)

� As an S-type constant: a displacement plus the contents of a general register on entry
to CMS/TSO Pipelines. The constant can be explicit base/displacement or it can refer
to a label in your program. In particular, the label can refer to the contents of a
DSECT.

S(8(R2))

S(PARMSTRING)

When an S-type address is specified that is resolved by the Assembler, the data must
be addressable from the register contents at the time CMS/TSO Pipelines is called.
The Assembler must have the same USING statements in effect when the macro is
assembled as will be in effect at the time CMS/TSO Pipelines is invoked to process
the request.

� As the address of a fullword that contains a pointer to the argument; that is, an indi-
rect reference. This is specified by prefixing a percent sign (%) to the address. The
fullword must be addressable from the register contents at the time CMS/TSO
Pipelines is called. The Assembler must have the same USING statements in effect
when the macro is assembled as will be in effect at the time CMS/TSO Pipelines is
invoked to process the request.

%PIPEPOINTER

� As a label of a storage address or a self-defining symbol. This is assembled as an
address constant. You can specify any expression that is valid in an A-type DC

instruction.

PIPELINE

L'PIPELINE

Negative numbers must be greater than -16M, lest they be interpreted as one of the
forms above; that is, if the sign bit is one, all eight leftmost bits must be one.

Using S-type References on CMS
When the PIPE command is issued by the CMSCALL macro with the CALLTYP=PROGRAM

keyword operand, only register 1 is passed through CMS from your application to
CMS/TSO Pipelines. If you specify CALLTYP=EPLIST, the address of the extended param-
eter list in register 0 is also passed to CMS/TSO Pipelines. In both cases it is de rigueur
that you specify COPY=NO to ensure that CMS does not provide a copy of your parameter
lists to CMS/TSO Pipelines. You need not construct an extended parameter list where

14  Copyright IBM Corp. 1995, 2010



  Address and Length Parameters
 

register 0 points; the parameter list is ignored by CMS/TSO Pipelines when it discovers the
parameter token list.

 Syntax Summary
 

A-type:
├─ ──┬ ┬──(register) ───────── ─┤

├ ┤──S(s-type) ──────────
├ ┤──label-* ────────────
├ ┤──%label ─────────────

  └ ┘─AssemblerExpression─

 StringSpec:
├─ ──┬ ┬─label─────────────────────── ─┤

└ ┘──(─┤ A-type ├─,─┤ A-type ├─)

Address:
├─ ──┬ ┬──(register) ───────── ─┤

├ ┤──%label ─────────────
  └ ┘─AssemblerExpression─

  Chapter 3. Specifying Addresses and Lengths in Control Blocks 15



 Address and Length Parameters  
 

16 CMS/TSO Pipelines: Programming Interface.  



  
 

!  Part 2. Filter Packages

! This part of the book describes the interface between
! the glue code between CMS/TSO Pipelines and the
! contents of a filter package.

! A sample filter package is built as part of the exposi-
! tion.

 Copyright IBM Corp. 1995, 2010  17



  
 

! Chapter 4. Overview of Filter Packages

! A filter package is a collection of functions that act as an extension of the main pipeline
! module. It can contain a combination of any of these:

! � An entry point table that resolves filters within the package.

! � A message table that is searched when a message is issued from a stage in the filter
! package. The main message repository is used when the message is not resolved in
! the filter package.

! � A table of built-in functions for spec.

! Figure 4 shows a modern type-2 filter package for CMS. Omit FPLNXH for TSO.

! Figure 4. Contents of a Filter Package

! ┌──────┐
! │FPLNXH│
! ├──────┤
! │ │ │
! └──────┘
!  

! ┌──────┐
! │FPLNXG│
! │ │
! │ │
! ├──────┤ ┌────────┐
! │ ───│───────────────────────────────�│FPLFUNTB│
! ├──────┤ ┌────────┐ ├────────┤ ┌────────────┐
! │ ───│────────────────�│FPLMTX │ │ ───│───────�│Function x │
! ├──────┤ ┌──────┐ │ │ ├────────┤ │ │
! │ ───│──�│FPLEPT│ │Messages│ │ │ │ │
! └──────┘ │ │ └────────┘ └────────┘ │ │
!  │ │ └────────────┘
!  ├──────┤ ┌────────┐
! │ ───│─────�│Stage x │
!  ├──────┤ │ │
!  │Entry │ │ │
!  │points│ │ │
!  └──────┘ └────────┘

! Installation and Retraction
! The notion of a filter package grew over time. Thus, there is a number of interfaces,
! initially with no help from CMS/TSO Pipelines, but eventually embodied in various glue
! modules that are used to link the user’s programs to CMS/TSO Pipelines.

! Filter packages may be installed actively by the filter package invoking the appropriate
! interface or passively through the filterpack stage. The first type is often referred to as a
! type-1 filter package whereas the latter is a type-2 filter package. CMS Pipelines supports
! both types of filter packages, but TSO Pipelines supports type-2 only.

18  Copyright IBM Corp. 1995, 2010



  
 

!  Interface Levels
! The initial implementation consisted of a way for a program to install and retract its entry
! point table by invoking the PIPMOD command using a parameter list indicating the action to
! perform (install or retract) and the object type (entry point table or message table).
! Loading the program and issuing the PIPMOD commands were the user’s responsibility.

! PIPNXF, DMSPFP, and FPLNXF
! The service module PIPNXF was soon written to handle the details of the PIPMOD interface.
! It was later augmented by code to support the filter package being in a CMS nucleus exten-
! sion that would install itself when invoked as a CMS command; it retracts from CMS
! Pipelines when the nucleus extension is dropped.

! The corresponding CMS module is DMSPFP, which is on the system disk. The runtime
! library supplies FPLNXF.

! This level supports an entry point table and a message table, but no function table.

!  FPLNXG
! FLNXG is the glue used with type-2 filter packages. It contains the assembled macro
! FPLFLTPK. This object module must be linked into type-2 filter packages. It contains
! address constants to resolve the contents of the filter package, but no code other that
! setting return code 16 when invoked as a command.

!  FPLNXH
! FPLNXH supplies the active code of FPLNXF to install using the parameter list in FPLNXG.
! Thus, an active type-2 filter package can be constructed by linking both FPLNXH and
! FPLNXG into a CMS module.

! Summary of Interface Modules
! Figure 5. Glue Module Summary

! PIPNXF! DMSPFP! FPLNXF! FPLNXG! FPLNXH

! Entry point tables
! (only first found used)
! PIPEPT! PIPEPT! PIPEPT
! FPLEPT
! FPLEPT

! Message text table
! (only first found used)
! PIPMTX! PIPMTX! PIPMTX
! FPLMTX
! FPLMTX

! Function table! FPLFUNTB

! Install/retract! Yes! Yes! Yes! No! Yes

  Chapter 4. Overview of Filter Packages 19



  
 

! Chapter 5. Entry Point Table

! An entry point table can be generated by the utility FPLEPTBL as described in appendix A
! of CMS/TSO Pipelines Author’s Edition or by assembling an entry point table with your
! code.

! Macros to Assemble an Entry Point Table
! Use the macros PIPEPT, PIPEPTEN, and PIPEPTED to assemble an entry point table.

! For completeness, all operands of the macros are described, even ones not appropriate to
! an entry point table in a filter package.

! PIPEPT—Open an Entry Point Table
! PIPEPT opens the table and generates code to identify it and define its name.

!  

! ��──PIPEPT─ ──┬ ┬────── ──┬ ┬─────────────────── ─�
!  └ ┘─name─ │ │┌ ┐─NO──
!  └ ┘!  ─ENTRY──=─ ──┴ ┴─YES─

! �─ ──┬ ┬─────────────────────── ─�

!   │ │┌ ┐─YES─
!   └ ┘!  ─SECONDARY──=─ ──┴ ┴─NO──

! name! Specify the label to generate for the symbol table. The default is
! PIPEPT. You must specify FPLEPT for use with FPLNXG or FPLNXH.

! ENTRY! Specify YES or NO, as appropriate. ENTRY is ignored when
! SECONDARY is specified, as the symbol must be an entry to the
! object module for the symbol to be resolved.

! SECONDARY! Specify whether the entry point table is referred to from another
! entry point table or not. In particular, specify NO for a filter
! package.

! PIPEPTEN—Define an Entry Point
! Each PIPEPTEN macro defines one filter. The macros must be ordered ascending in the
! EBCDIC collating sequence.

!  

! ��──PIPEPTEN──name──entry─ ──┬ ┬────────────────────────── ─�
!  │ │┌ ┐─NO──
!  └ ┘!  ─SELFRELOCATE──=─ ──┴ ┴─YES─

! �─ ──┬ ┬───────────────── ──┬ ┬──────────────────── ─�
!   │ │┌ ┐─A─ └ ┘!  ─MIN──=─ ──┬ ┬────────
!   └ ┘!  ─ATYPE──=─ ──┴ ┴─V─ └ ┘─number─

! �─ ──┬ ┬─────────────────────── ──┬ ┬─────────────────────────── ─�

!   │ │┌ ┐─0────── └ ┘!  ─PGMLANG──=─ ─── ──ASSEMBLER─
!   └ ┘!  ─COMMIT──=─ ──┴ ┴─number─

20  Copyright IBM Corp. 1995, 2010

http://vm.marist.edu/~pipeline/pipeline.pdf


  
 

! name! The name of the stage as it is specified in a pipeline specification.

! entry! The label on the PIPDESC macro that assembles the program
! descriptor; or the label on the program list of an in-core REXX

! program.

! SELFRELOCATE! Specify yes to save a relocation directory entry.

! ATYPE! Specify V for a pipeline descriptor that is in another source file.

! MIN! Specify the length of the minimum acceptable abbreviation. No
! abbreviation is available when this operand is omitted.

! COMMIT! Specify the starting commit level. This operand is not appropriate
! when the name references a program descriptor; it is used to
! specify the stating commit level for a REXX program.

! PGMLANG! Deprecated; do not specify.

! PIPEPTED—End of Entry Point Table
! Finish the entry point table with a PIPEPTED macro. No operands are accepted.

!  

! ��──PIPEPTED──�


!  Example
! Using an entry point table file:

!  pipe < fpltfp eptable | console

! �msg900 fpltfpr1

! �msg901 fpltfpr2

! �Ready;

!  fpleptbl fpltfp fpltfpep.text ( fplept

! �Ready;

  Chapter 5. Entry Point Table 21



  
 

! Chapter 6. Message Text Table

! The input to generating a message table is a standard CMS message repository, even when
! generating messages for TSO. FPLGMS is for CMS/TSO Pipelines what GENMSG is to CMS,
! a way to generate a message text object module.

! If you wonder why CMS/TSO Pipelines does not use the CMS infrastructure, the answer is
! twofold: First, CMS Pipelines predates the CMS message repositories; and second, TSO

! does not support the CMS message infrastructure.

! FPLGMS—Generate Message Text Object Module
!  

!  ┌ ┐─FPLMES── ┌ ┐─FPLMTX.TXTFIX─ ┌ ┐─FPLMTX─────
! ��──FPLGMS─ ──┼ ┼───────── ──┼ ┼─────────────── ──┼ ┼──────────── ─�

!  └ ┘─infname─ └ ┘─outfname────── └ ┘─entryPoint─

! The three operands are:

! 1. The input file name. The file type is REPOS.

! 2. A single word that specifies the output file name and optional file type. The file type
! is abutted to the file name with a period. The default output file type is TXTFIX.

! 3. The name of the entry point for the message table. Refer to Figure 5 on page 19 for
! the appropriate entry point name, which depends on the glue module you will be
! using.

!  Example
! The input repository file is shown below. It contains messages 900 and 901. Both are
! format 01 and one line.

!  pipe < fpltfp repos | console

! �& 3

! �09000101E This is the first test message. (&1)

! �09010101W This is the second test message. (&1)

! �Ready;

!  fplgms fpltfp fpltfpmt.text fplmtx

! �Ready;

22  Copyright IBM Corp. 1995, 2010



  
 

! Chapter 7. Generating an Object Module Containing REXX Stages

! FPLGRXTX generates an object module containing in-core REXX stages.

! FPLGRXTX—Generate REXX Filters Object Module
!  

! ��──FPLGRXTX──inFile─ ──┬ ┬───────── ──┬ ┬──────────── ─�
!  └ ┘─outFile─ └ ┘─entryPoint─

! �─ ──┬ ┬────────────────── ─�

!   │ │┌ ┐─────────────
!   └ ┘!  ─(─ ───
 ┴┬ ┬─NODIR───
!  └ ┘─COMRESS─

! inFile! Specify the input file name and type separated by a period.
! Several file types modify the processing of FPLGRXTX:

! REXXES The input file contains a list of file names; the implied
! file type is REXX. This is the default file type.

! PACKAGE The input file contains a list of files. The tokens &1
! and &2 are removed from the first seven columns and
! the first three words are then the file name, the file
! type, and the file mode.

! EPTABLE The first word of each input line is the file name of
! the filter; the file type is REXX.

! For all file types, a leading asterisk indicates a comment, which is
! discarded.

! outFile! Specify the output file name, type, and mode separated by periods.
! The default file type is TXTFIX.

! entryPoint! Specify the the control section name to be generated.

! NODIR! Specify NODIR when you generate the entry point table manually,
! in particular if the filter package contains both REXX and Assem-
! bler filters. The file REXXES EPTABLE is created by default.

! COMPRESS! Compress each REXX program to a single line with redundant
! blanks removed.

!  Example
! This example shows the list of files, the contents of the files, and the generation of the
! object module.

 Copyright IBM Corp. 1995, 2010  23



  
 

!  pipe < fpltfp rexxes | console

! �fpltfpr1

! �fpltfpr2

! �Ready;

!  pipe < fpltfpr1 rexx | console

! �/* Sample */

! �'issuemsg 900 fpltfpr1 /parm1/'

! �Ready;

!  pipe < fpltfpr2 rexx | console

! �/* Sample */

! �'issuemsg 901 fpltfpr1 /parm2/'

! �Ready;

!  fplgrxtx fpltfp fpltfprx.text ( nodir compress

! �Ready;

! Trying to run the filters outside the filter package gets an error message because the 900
! series of messages is reserved for user written filter packages:

!  pipe fpltfpr1

! �No message text for message 900.

! �... Issued from stage 1 of pipeline 1.

! �... Running "fpltfpr1".

! �Ready;

24 CMS/TSO Pipelines: Programming Interface.  



  
 

! Chapter 8. User Written Functions for spec

! User-written functions for spec are supported in type-2 filter packages as of 1.1.12/04. A
! filter package can contain both filters and functions, but this chapter deals with functions
! only.

! The function table is at the entry point FPLFUNTB (nonnegotiable). You can generate a
! self-installing type-2 filter package by including both FPLNXG and FPLNXH in the module.

! A function can take op to 255 arguments; it produces a single result.

! Refer to Chapter 16, “Sample spec Function Package” on page 67 for a complete sample
! function package.

! Notes:

! 1. In this chapter, “floating point” refers to a counter that contains a decimal floating
! point number, as defined later. That is, not a hardware-defined data item.

! Such a floating point number consists of a 31-digit decimal fraction, which is stored in
! a 16-byte packed decimal number, and a binary integer scale, which represent the
! power of ten with which the fraction is multiplied to obtain the number. A truly large
! range.

! 2. You must use the PIPCALL macro to call routine; external address constants will not
! work.

! 3. The pipeline services transfer vector must be available when a CMS/TSO Pipelines
! macro is issued or one of its subroutines is called.

! Defining Functions to CMS/TSO Pipelines
! The functions are defined by a function table, which is built using the macros FPLFUNTB,
! FPLFUNTE, and FPLFUNTN. You must define the DSECT versions of the first two macros
! before you can generate the CSECT version.

! FPLFUNTB—Function Table Header
! The function table header has this syntax:

!  

! ��──label──FPLFUNTB─ ──┬ ┬────────────────── ──┬ ┬──────────────────── ─�

!  │ │┌ ┐─DSECT─ │ │┌ ┐─NO──
!  └ ┘!  ─TYPE=─ ──┴ ┴─CSECT─ └ ┘!  ─EXTERNAL=─ ──┴ ┴─YES─

! label! Label on the table when TYPE=CSECT is specified. Must be blank
! otherwise.

! TYPE! Specify DSECT or CSECT as appropriate.

! EXTERNAL! Specify YES to generate V-type pointers to function implementa-
! tion; specify NO for A-type.

 Copyright IBM Corp. 1995, 2010  25



  
 

! FPLFUNTE—Function Table Entry
! This macro defines one function, its result, and its arguments.

!  

! ��──<blank>──FPLFUNTE──name──entry─ ──┬ ┬────────────── ─�
!  └ ┘!  ─MIN=──number─

! �─ ──┬ ┬────────────── ─RESULT=──┤ Type ├──�
!   └ ┘!  ─MAX=──number─

! �─ ──┬ ┬─────────────────────────── ─�

!   │ │┌ ┐─,────────
!   └ ┘! ─ARGS=──(─ ───
 ┴─┤ Type ├─ ─)─

! Type:
! ├──(─ ──┬ ┬─ANY──── ──┬ ┬─────────────────── ─)──┤
!  ├ ┤─STRING─ │ │┌ ┐─,──────────
!  ├ ┤─INT──── └ ┘!  ─,─ ───
 ┴┬ ┬─OPTIONAL─
!  └ ┘─FLOAT── └ ┘─SAME─────

! The type of the result and of each argument is specified by the two keyword operands.
! The types and optional flags are:

! name! The name of the function, as written in an expression.

! entry! The label of the entry point to the code that implements the func-
! tion.

! MIN! Specify the minimum number of arguments. This is usually
! inferred from the first argument that is specified OPT.

! MAX! Specify the maximum number of arguments. This can be used in
! conjunction with SAME. The default is 255 when SAME is
! specified.

! ANY! Any type. The function determines and handles the actual argu-
! ment.

! STRING! The argument is converted to a string, as required. This is unsuc-
! cessful only when there is no storage to hold the converted
! number.

! INT! The argument is converted to an integer. spec will issue a
! message and terminate if the argument cannot be converted to a
! signed 32 bit binary number.

! FLOAT! The argument is converted to a decimal floating point number
! having 31 digits precision and a fullword binary scale. spec will
! issue a message and terminate if the argument cannot be converted
! to float.

! OPTIONAL! The argument is optional. You may also specify OPT.

! SAME! The remainder of the arguments are the same as the one being
! defined. Specify MAX if the maximum supported number of oper-
! ands is less than 255.

26 CMS/TSO Pipelines: Programming Interface.  



  
 

! Notes:

! 1. The label field must be blank.

! 2. The minimum and maximum argument counts are normally inferred by FPLFUNTE from
! the ARGS operand.

! 3. The ARGS operand may be omitted only when the function takes no arguments; other-
! wise one suboperand is required.

! 4. FPLFUNTE macros must be supplied in the collating sequence by name.

! 5. Assembly will fail for function names that are longer than 100 characters.

! FPLFUNTN—End of Function Table
! This macro must be coded with a blank label field and no operands.

!  

! ��──<blank>──FPLFUNTN──�


! Example of REXX Function Definitions
! This example shows how a few of the REXX-like functions are defined for spec. FUNX is
! a wrapper macro (not published) that issues FPLFUNTE with the first operand as both name
! and entry point.

!  FUNX OVERLAY, +

!  RESULT=STRING, +

!  ARGS=(STRING,STRING,(INT,OPT),(INT,OPT), +

!  (STRING,OPT)) FUNPACK

!  FUNX POS,RESULT=INT, +

!  ARGS=(STRING,STRING,(INT,OPT)) FUNPACK

!  FUNX REVERSE,RESULT=STRING,ARGS=STRING FUNPACK

!  FUNX RIGHT, +

!  RESULT=STRING, +

!  ARGS=(STRING,INT,(STRING,OPT)) FUNPACK

!  FUNX SIGN,RESULT=INT,ARGS=FLOAT FUNPACK

! Function Entry Conditions
! A function is entered with these register contents. The function must return with
! unchanged register contents, except for the return code in register 15.

  Chapter 8. User Written Functions for spec 27



  
 

! 0! Address of a counter where a numeric result is returned. You indicate that a value is
! present by setting the sign nibble to the appropriate value.

! 1! Address of a buffer (PIPBFR) where a string result is returned. The buffer is empty. A
! string result is indicated by not modifying the sign of the counter passed in register 0.

! 2! Address of the first argument of the argument list. Each argument is 20 bytes. Do not
! modify the arguments as they may contain information that spec needs after the function
! has returned.

! 3! Count of arguments.

! 9! Pipeline Services Transfer Vector (PSTV). Do not touch this register.

! 11! spec work area. Must be preserved on calls to FPLSPSLW.

! 13! Save area. The forward pointer at offset 8 contains the address of a 400-byte area that the
! function may use as save area or work area, or both. That is, HLLSTACK in PL/j parlance.
! Note that his 400-byte area is not contiguous with the save area in register 13.

! 14! Return address.

! 15! Entry point address. Return code on exit. A nonzero return code indicates a severe error;
! spec identifies the failing item in message 1490 and terminates.

! Format of the Result and an Argument
! The result (other than a string) and each argument is a 20 byte spec counter. While still
! termed a counter for historical reasons, this is a bit misleading as the counter can contain
! nonnumerical data.

! The counter is defined by the mapping macro FPLSPCTR. This section describes the labels
! defined when PREFIX= is omitted from the macro.

! The Sign Nibble
! The final nibble (which is the sign when a floating point number) defines the type of the
! counter’s contents. This is of interest to you only if you have specified ANY for the type
! of the argument; otherwise spec will have coerced the argument to the type you require.

! For completeness, the following table describes all values used by CMS/TSO Pipelines.

28 CMS/TSO Pipelines: Programming Interface.  



  
 

! You do not need to decode all of the sixteen possible values. The sign nibble may be
! summarised by calling FPLSPVES. The address of the counter must be in general register 7;
! the encoded value is returned in general register 1. If the encoded value indicates a string,
! PIPSPSLW will return the string for any of the three string types.

! For the floating types, the implied decimal point is at the right of the digits string. Thus, a
! value is definitely an integer when the scale is not negative. The number is also an integer
! when the scale is negative, but greater than the negative of the number of trailing zeros in
! the digits field. You may call FPLSPVTI to normalise the counter so that the absolute value
! of the scale is as small as possible. After that, a negative scale indicates a true fractional
! number.

! The encoded values of the sign are also defined by the counter mapping macro FPLSPCTR.
! The prefix is not applied to these names.

! &P._SIGNNULL! 0! Null (unassigned) counter. Converts to 0 for
! numeric or a null string.

! &P._SIGNOMITTED! 1! Omitted parameter.

! &P._SIGNCTRX! 2! Lvalue. Pointer to actual counter in &P._SCALE. A
! user function should not see this type of argument.

! 3! Unused

! &P._SIGNLIT! 4! The first 19 bytes of the counter contains a literal
! string that is prefixed a byte containing its length.

! &P._SIGNSTRCNST! 5! Address and length (four bytes each) of constant
! literal string in &P._STRING_ADDRESS.

! &P._SIGNSTRSPACE! 6! String in string space. _STRING_ADDRESS
! contains the offset and length of the string in the
! string space. Call FPLSPSLW to obtain the actual
! string.

! 7! Unused

! &P._SIGNBIN! 8! Two’s complement binary integer in &P._BINARY.

! &P._SIGNUNSIGNEDBIN! 9! Unsigned binary integer in &P._BINARY.

! &P._SIGNPOSXACT! 10! Exact positive floating point.

! &P._SIGNNEGXACT! 11! Exact negative floating point.

! &P._SIGNPOS! 12! Inexact positive floating point.

! &P._SIGNNEG! 13! Inexact negative floating point.

! OPENC_NULL! 0! Null or omitted.

! OPENC_BIN! 1! Fixed point binary; possibly unsigned.

! OPENC_FP! 2! Floating point any sign, any exactness.

! OPENC_STR! 3! String of any variation.

! OPENC_PCTR! 4! Lvalue; should not occur.

! OPENC_BAD! 5! Not a valid encoding. This is an error in CMS/TSO
! Pipelines.

  Chapter 8. User Written Functions for spec 29



  
 

! One way to decode an argument is shown in the next example.

!  LR R7,R2 Get counter

!  PIPCALL SPVES Encode it

!  CASBEG TYPE=VECTORED,MIN=0,MAX=OPENC_BAD,REG=R1

!  CASITEM OPENC_NULL

!  SR R0,R0

!  CASITEM OPENC_BIN

!  L R0,_BINARY

!  CASITEM OPENC_FP

!  L R0,_SCALE

!  CP _DIGITS,=P'0' Zero?

!  CASITEM OPENC_STR

!  LR R1,R2 Get counter

!  PIPCALL SPSLW

! <R4,R5> now contains the string.

!  CASITEM

!  <Trouble>

!  CASEND

!  Data Fields
! The data fields of the counter are:

! Again, recall that FPLSPSLW will take care of the last five fields for you.

! &P._SCALE! 0! 4! Exponent when the counter contains a
! floating point number; a pointer to another
! counter when the counter represents an
! lvalue.

! &P._DIGITS! 4! 16! Packed decimal fraction (31 digits) when the
! counter contains a floating point number.

! &P._BINARY! 4! 4! Integer.

! &P._STRING_ADDRESS! 4! 4! Address of string.

! &P._STRING_OFFSET! 4! 4! Offset to string.

! &P._STRING_LENGTH! 8! 4! Length of string.

! &P._LITERAL_LENGTH! 0! 1! Length of literal string.

! &P._LITERAL_STRING! 1! 18! Literal string.

! CMS/TSO Pipelines Subroutines to Support Functions
! A number of macros are available to support the programmer implementing a function. In
! fact, the full PL/j language is at your disposal as are all the scanning macros.

! Supporting Entry Points You Can PIPCALL
! The prefix FPL is omitted in this list as you do not specify it on the PIPCALL macro.

! SPSLW Given a counter pointed to by register 1, return the string stored in it (irrespec-
! tive of which of the three types) in registers 4 (address) and 5 (length). Note
! that the value of the string may not be stable beyond the return from the func-
! tion.

30 CMS/TSO Pipelines: Programming Interface.  



  
 

! SPVES Given a counter pointed to by register 7 return in register 1 the encoded type
! (the summary type).

! SPVTI Given the address of a counter containing a floating point number in general
! register 7, try to reduce the absolute value of the scale. For a positive scale
! the digits are shifted right until the leftmost digit is nonzero; for a negative
! scales the digits are shifted right until the leftmost one is nonzero.

!  Macros
! You may need to use several of the CMS/TSO Pipelines macros. Here are a few.

! PIPBFRAP Use PIPBFRAP to append a string to a buffer, in particular the one provided for
! the result. Load the buffer address provided into register 1. The string to
! append is in registers 4 and 5 or you can specify a label as the second
! operand. If register 4 contains a negative value, the negative of the pad char-
! acter is in the rightmost byte of the register. Assuming you have squirrelled
! away the buffer address in register 6:

! PIPBFRAP (R6),'Not on your nelly!'

! Or you can specify everything in the required registers:

!  LR R1,R6

!  LA R4,=C'Not on your nelly!'

!  LA R5,18 (Perhaps)

!  PIPBFRAP ,

! A nonzero return code from PIPBFRAP indicates that CMS/TSO Pipelines has
! run out of storage. You must issue message 122 in this case unless you
! specify EXIT= on the macro.

! PIPBFRLD PIPBFRLD is a variant of PIPBFRAP that clears the buffer before loading the
! specified string.

! PIPVERV2 Verify that your function runs on a recent version of CMS/TSO Pipelines.
! After this macro, general register 15 contains a positive value if the entry point
! is available.

  Chapter 8. User Written Functions for spec 31



  
 

! Chapter 9. Generating the Filter Package Module

! To generate the filter package after the constituent object modules are built.

!  global txtlib fpllib

! �Ready;

!  load fplnxh (clear

! �Ready;

!  include fplnxg fpltfpep fpltfpmt fpltfprx fplfun (reset fplnxhsi

! �Ready;

!  genmod fpltfp ( from fplnxh

! �Ready;

! Note that FPLNXH is loaded first, that the module entry point is reset to it, and that the
! module is generated from that symbol.

! Testing the filter package:

!  fpltfp

! �Ready;

!  pipe msg900

! �fpltfp900E This is the first test message. (parm1).

! �... Issued from stage 1 of pipeline 1.

! �... Running "msg900".

! �Ready;

!  pipe fltpack modlist fpltfp | console

! �Module FPLTFP loaded dynamically

! �The first message is 900; last 901

! �It contains 2 entry points

! �Stage MSG900 at 019073F8 flags 00000000.

! �Stage MSG901 at 01907478 flags 00000000.

! �It contains 1 functions

! �Ready;

!  nucxdrop fpltfp

! �Ready;

32  Copyright IBM Corp. 1995, 2010



  
 

 Part 3. Miscellaneous Interfaces

This part of the book describes other interfaces that do
not fit within the previous parts of the book.

 Copyright IBM Corp. 1995, 2010  33



 User Words  
 

Chapter 10. CMS/TSO Pipelines User Words

User words are pieces of storage, within the CMS/TSO Pipelines control block structure,
that are reserved for the use of the programmer writing pipeline device driver stages or
interfaces to stages that require a runtime environment to be established for each stage.

User words are established in a hierarchy, which is shown in Figure 6.

Notes:

1. On z/OS prior to TSO Pipelines 1.1.11, persistent storage was not used for the global
control blocks; thus the first two user words were initialised on each PIPE command.
Multitasking is not supported within a PIPE command. Recursions of the PIPE

command are not recognised; the pipelines will run in parallel, as determined by the
z/OS dispatcher.

2. On CMS, concurrent PIPE commands on different threads or processes are supported.

Figure 6. User Word Hierarchy

Lvl Name Description

1 PIPGLOBUSER A single word that is global to the entire pipeline
structure within a virtual machine (strictly, for a
particular nucleus extension installed for CMS
Pipelines). On CMS, this user word is kept in
storage that persists until the pipeline nucleus
extension is dropped or until ABEND cleanup. On
z/OS, this user word is kept in storage that persists
until the end of the job step, or the TSO Pipelines
module is reset by the command FPLRESET.

2 PIPTHRDUWRD A single word that is specific to the process/thread
combination. This user word is kept in storage
that persists after a PIPE command has completed;
it will exist at least as long as there is an active
pipeline on the process/thread in question. An idle
pipeline thread block (one representing a
process/thread that has no active pipelines) may be
reused for a different process/thread. Once it has
been allocated, the thread block is retained until
the pipeline nucleus extension is unloaded or until
ABEND recovery.

3 PIPHUWRD A single word that is specific to a particular pipe-
line set. Each PIPE command and each record
passed to runpipe creates a new pipeline set.
When the parameter token “uwrd” is specified, this
user word is initialised to the value specified. That
is, the contents of the second word of the “uwrd”
token are copied into this word.

4 PIPVUWRD A single word that is specific to a particular pipe-
line specification.

5 PIPBUSER Three words that are specific to each stage.

34  Copyright IBM Corp. 1995, 2010



  User Words
 

CMS/TSO Pipelines allocates the storage that contains the user words and initialises it to
binary zeros. It exposes the address of the user words in two ways:

� The CMS/TSO Pipelines exit facility exposes the user words for global, set, and stage,
but it does not expose the the user words for thread and specification. The stage user
words are exposed as part of a larger data area (called the PIPEBLOK), which is made
available to the exit. Refer to User Exit in CMS Pipelines Installation and Mainte-
nance Reference, SL26-0019.

� The PIPUWRD macro returns in register 15 the address of a list of five pointers to the
user words in the hierarchy described above. The list is stable until the next call for
pipeline services in the pipeline specification. (The return code is zero if there is no
active stage.)

Figure 7. PIPUWRD Return Code and the uwrd Parameter Token

PIPUWRD PIPTPARM

R15 ─────�┌────┐ ┌────┐ │ │
 │ ───│──────────────�│ 0│ ├────┤
 ├────┤ ┌────┐ └────┘ │ │
 │ ───│──────�│ 0│ ├────┤
 ├────┤ └────┘ ┌────┐ │uwrd│

│ ───│──────────────�│ ───│────────┐ ├────┤
├────┤ ┌────┐ └────┘ │ ┌──│─── │

 │ ───│──────�│ 0│ │ │ ├────┤
├────┤ └────┘ ┌────┐ │ │ │ │
│ ───│──────────────�│ 0│ │ │
└────┘ ├────┤ │ 


 │ 0│ │ ┌────────┐
 ├────┤ └──────�│Anchor │
 │ 0│ └────────┘
 └────┘

  Chapter 10. CMS/TSO Pipelines User Words 35



 User Words  
 

36 CMS/TSO Pipelines: Programming Interface.  



  
 

 Part 4. Copipes

This part of the book contains the answer to one of the
questions often asked by programmers who use
CMS/TSO Pipelines:

I have this module written in [...] and I would
like to apply the [...] filter to process one of
its input files in a pipeline. How do I do that
without writing an intermediary file or
converting the program to a filter (which
would be impossible, because of [...])? I
would also like to do some of my own proc-
essing before passing the record to the [...]
filter.

Copipes allow a program that is not a stage in a pipe-
line to start a pipeline that runs in conjunction with
this controlling program. The controlling program can
inject and extract data from the pipeline through fitting
stages. A fitting stage is the controlling program’s
agent in the pipeline.

Each copipe is independent of all other pipeline
activity; any number of copipes can be active concur-
rently. Control is returned to the controlling program
when no more data can move in the pipeline. The
controlling program must then direct fitting stage(s) to
produce or consume records, as appropriate, to make
data flow.

The POPEN interface is an example that uses a copipe
to implement UNIX popen() with CMS/TSO
Pipelines.

 Copyright IBM Corp. 1995, 2010  37

http://vm.marist.edu/%7epipeline/popen.pdf


 Overview  
 

Chapter 11. Overview of Copipes

Two significant new concepts are introduced into CMS/TSO Pipelines to resolve the
requirement to make pipelines available to existing programs: copipes and fittings.

Copipes make it possible for an application to be written partly as a traditional program
and partly as a pipeline. When copipes are used, the application program and the pipeline
run as coroutines. This means that the program and the pipeline each maintain their sepa-
rate states; they take turns at running; and they transfer control between themselves by a
resume operation.

Coroutines are not a new concept for users of CMS/TSO Pipelines. Stages in a pipeline
run as coroutines; they take turns at processing data, but they do not call each other
directly. Instead, pipeline stages yield control to the pipeline dispatcher, which creates the
appearance that each stage is entirely in control of the sequence of events.

In the same way, pipeline sets run as coroutines when the runpipe built-in program is used
to run a pipeline and process the messages and event records that are issued.

With copipes, this concept is taken further to allow an application that is not in any way
controlled by CMS/TSO Pipelines to access data in the pipeline and to provide data for the
pipeline. A fitting stage is the space warp through which records move between the pipe-
line and the application program. A fitting stage is the application’s agent in the pipeline.
A pipeline can contain any number of fitting stages.

To allow for additional information that must be specified to run copipes, CMS/TSO
Pipelines has been changed to accept a new form of parameter list containing parameter
tokens. This parameter list cannot be mistaken for a command entered from the terminal.
The structure of the parameter list allows for easy future enhancement. Refer to
Chapter 1, “Issuing Pipeline Requests with Parameter Tokens” on page 2.

When the application starts the copipe, it can use either the current string representation of
the pipeline specification or a new format called an encoded pipeline specification. The
encoded pipeline specification is structured and does not rely on special characters to
delimit stages or pipelines. This is particularly useful when the application wishes to hand
over data that are in a format that the application does not understand or does not wish to
parse. Refer to Chapter 2, “Encoded Pipeline Specifications” on page 7.

Encoded pipeline specifications and copipes can be invoked only through parameter tokens,
but they are not mutually requisite; nor are they mutually exclusive. A pipeline that
contains a fitg parameter token is run as a copipe with the application that issues the
request. A pipeline request that does not include the fitg parameter token is run to
completion before control is returned to the application, just as it would be on a PIPE

command. In either case, the pipeline to be run can be specified either by a character
string (pipe token) or as an encoded pipeline specification (encd token).

 General Notes
1. Addresses and lengths are specified in a generalised way that can save you building

parameter lists dynamically when you need to substitute bits of runtime information
into a statically assembled structure. Refer to Chapter 3, “Specifying Addresses and
Lengths in Control Blocks” on page 14.

38  Copyright IBM Corp. 1995, 2010



  Overview
 

2. The word “label” is ambiguous when CMS/TSO Pipelines terminology is merged with
the terminology of procedural programming. In both cases, however, a label identifies
an object. In the syntax diagrams in this book, the syntax variable label is used for
labels that identify an Assembler instruction or a control block, whereas pipeLabel is
used for labels that define a multistream pipeline topology.

  Chapter 11. Overview of Copipes 39



  
 

Chapter 12. Copipes and Pipeline Fittings

When the PIPE parameter token list includes a fitg token, the pipeline runs as a coroutine
with the invoking program.

A pipeline set that runs as a copipe contains one or more fitting stages, each of which
defines a point at which the application can send data into the pipeline or receive data
from the pipeline depending upon the position of the fitting stage in the pipeline.

For each fitting stage, the application defines a request parameter list (RPL), which it uses
to indicate the next action the fitting stage should take.

For each pipeline set run as a copipe, the application defines a communications area to
contain the information needed to allow the application and the copipe to resume one
another. An application can define multiple communications areas and invoke multiple
concurrent copipes, but it remains to be seen whether this capability can be put to any
practical use.

The pipeline is invoked using a parameter token list that contains a fitg token that
specifies the address of the communications area and a pipe or encd token that specifies
the pipeline to run.

When nostart is specified in the flag byte of the communications area, the pipeline
returns on the initial command or call after the scanner has processed the pipeline
specification, but before any stages have been started. When nostart is omitted, the pipe-
line is started and runs until it can move no further data.

Any errors detected by the pipeline specification parser or syntax exits will cause a
nonzero return code on the initial call. This means that the pipeline has been abandoned
and thus, no address is provided for the resume function. If an rc parameter token was
provided, the fullword addressed by this token will be set to the return code, in addition to
it being provided in general register 15.

If the initial return code is zero, CMS/TSO Pipelines stores information in the communi-
cations area before it returns to the application (resumes the application). The communi-
cations area is declared and generated with the PIPFTPRM macro.

The communications area contains:

� The level of the communications area. This is assembled as the constant 1.

� A flag byte for the application to control the copipe:1

1 In the values for the flag bits, the variable symbol “&P.” represents the string specified by the PREFIX= keyword on the PIPFTPRM macro.

40  Copyright IBM Corp. 1995, 2010



  
 

� A status byte, which reports the progress of the pipeline:

0 (&P.READY) One or more requests changed state. The copipe has not
terminated.

1 (&P.DONE) The copipe has terminated. Register 15 contains the return
code from the pipeline. The return code is also stored at the address
specified in an rc parameter token.

2 (&P.NO_DATA) No request changed state. The application should provide
data, consume data, or wait on the wake-up ECB. The pipeline is stalled if
the wait count is zero and the application cannot provide or consume data.
Refer to “Using Stages that Wait for External Events” on page 44.

� A list of RPLs to be processed.

� The address of the RPL that must be ready before the application wishes to be
resumed. The 04 flag bit (&P.WAITRPL) must be on to enable this field. If this is
enabled, CMS/TSO Pipelines will wait on external events until the RPL changes state
rather than returning control to the application.

� An anchor whence CMS/TSO Pipelines retrieves its control blocks when it is resumed.

� A pointer to the “resume” function, which the application calls to resume pipeline
operations.

� A pointer to a fullword that contains the count of the stages currently waiting on an
external event.

� A pointer to an ECB that will be posted when an external event occurs.

When CMS/TSO Pipelines returns control on the initial call with a return code of 0, the
pipeline set just created is kept in suspended animation until the application resumes it by
issuing the PIPRESUM macro. As the only parameter on PIPRESUM, the application provides
the address of the communications area, which contains the anchor that was returned
initially and a list of fitting requests (RPLs) describing buffers that contain input records
and places where the pipeline can store the address and length of output records. See
Figure 9 on page 43 for the parameter list layout. The pipeline dispatcher then runs until
it can find no more work to do. If the pipeline terminates, the status code is set to that
effect. The pipeline then returns to the application, allowing it to resume.

The application then takes another turn, processing the data it has received from the pipe-
line and providing new data to be processed in the pipeline. The application then resumes
the pipeline to allow it to take another turn.

A fitting stage represents a point in the pipeline where the calling program can inject or
extract records. In order that multiple fittings can be supported, the fittings are given an
identifier, which can be one to eight characters. Case is respected in fitting identifiers.

xxxx xxx1 (&P.NOSTART) Return to the application after the pipeline has been
scanned, but before it is started. When this flag is zero, the pipeline is
started (assuming the scanner finds no errors).

xxxx xx1x (&P.TERMINATE) Terminate the pipeline. The list of request parameters
is ignored. The same effect can be achieved by specifying zeros instead
of the pointer to the list of RPLs.

xxxx x1xx (&P.WAITRPL) Wait for the specified RPL to become ready. When this bit
is zero, the pipeline will resume the application whenever it has no work
to do.

  Chapter 12. Copipes and Pipeline Fittings 41



  
 

The fitting identifier is supplied as the argument to the fitting stage and in the request
parameter list. This lets the copipe support relate a request to a particular fitting stage.

The scope of a fitting identifier is the pipeline set. That is, all fitting identifiers must be
unique within the pipeline set, which comprises the initial pipeline specification and all
pipeline specifications added by ADDPIPE and CALLPIPE.

A fitting stage can either read data from the pipeline or write data into the pipeline, but it
cannot do both. A fitting that writes data from the application into the pipeline is a first
stage; it has the behaviour typical of an input device driver. A fitting that reads data from
the pipeline into the application is not a first stage; it has the behaviour typical of an
output device driver. (It also passes the record to its output stream, if it is connected, and
it does not propagate end-of-file backwards.)

The pipeline can contain stages that wait for external events, as for example tcpclient.
When it does, the application can run while such a stage waits. See “Using Stages that
Wait for External Events” on page 44.

Starting a Copipe
A copipe is established if the pipeline request contains a fitg request token. Figure 8
shows the layout of the parameter list when a copipe request is issued on CMS.

The parameter list could have been generated by this macro:

 PIPTPARM PREQ,CMS=YES,(FITG,S(COMM_AREA)),(PIPE,PIPELINE)

PIPELINE DC C'fitting input|console'

The communications area would be defined by a PIPFTPRM macro in the work area:

 PIPFTPRM TYPE=INLINE,PREFIX=COMM_

Note:  On CMS, you can use only registers 0 and 1 as a base for S-type references; and
you must specify COPY=NO on the CMSCALL macro to be sure that the addresses passed to
CMS Pipelines are the ones you have passed to CMS. Refer to “Using S-type References
on CMS” on page 14 for further information.

Figure 8. Parameter List when Starting a Copipe (CMS)

┌─────┐
│GPR 1│────────�┌────┐
└─────┘ │PIPE│
 │ │
 ├────┤

│** │ ** represents x'ffff'
 │pipe│
 ├────┤
 │fitg│ ┌─────────────────┐
 │ │───────�│Communications │
 ├────┤ │Area │
 │pipe│ │ │

│ │───┐ └─────────────────┘
 │ 25│ │

│ 0│ │ ┌────────────────────────┐
├────┤ └───�│fitting input | console │

 │****│ └────────────────────────┘
 │****│
 └────┘

42 CMS/TSO Pipelines: Programming Interface.  



  
 

Resuming a Copipe
Use the PIPRESUM macro to resume the pipeline.

Figure 9 shows the parameter list layout. This structure is the same on CMS and z/OS.

The leftmost bit of the pointer to the communications area must be on to indicate that
there is only one parameter on the resume operation. Return code -10 is set in general
register 15 and the resume operation is suppressed, if the parameter list has more than one
entry or if the communications area anchor does not point to the appropriate type of
control block.

Figure 9. Parameter list when Resuming a Copipe

┌─────┐
│GPR 1│───────┐
└─────┘ │
 

 ┌────────┐ ┌────────────────┐
 │pointer │───────────�│Communications │

└────────┘ │Area │
 │ │
 └────────────────┘
 │
 │
 

 ┌────────┐
 │PIPFTRPL│ ┌────────┐
 │ │──────�│PIPFTRPL│
 ┌──────────────────────────────│ │ │ │
 │ │ │ │ │
 │ └────────┘ │ │
 │ └────────┘
 

 ┌─────────────────────────┐
 │ Buffer │
 │ │
 └─────────────────────────┘

Terminating a Copipe
The application can force the copipe to terminate by issuing the PIPRESUM macro with the
TERMINATE=YES keyword operand. This forces the copipe to terminate all active fitting
stages. If this does not terminate the pipeline, all stages that are waiting for an external
event are signalled to terminate, in the same way they would terminate if a record were
passed to a pipestop stage. If this still does not terminate the pipeline, it will be forced to
stall. The application can be sure that the pipeline has been terminated and that all
resources have been released when it regains control after this final resume operation.

The application must ensure that the pipeline has terminated before it terminates itself.
Resource leakage is likely if the pipeline is left running; on z/OS, some of the lost
resources may be reclaimed at the end of the task, but others (e.g., subpool 0) will not be
reclaimed until the job step task terminates. On CMS, resources will not in general be
reclaimed until ABEND recovery.

If the “done” status code has not been received, the application should issue the PIPRESUM

macro to terminate, as described above. Such a call will always set the “done” status.

Once the application has received a “done” status code, it must not resume the pipeline.

  Chapter 12. Copipes and Pipeline Fittings 43



  
 

Using Stages that Wait for External Events
To allow the application to coordinate its own WAIT macros with CMS/TSO Pipelines’, the
interface exposes the pipeline “wake up” ECB, which is posted when one of the waiting
stages becomes ready to run. CMS/TSO Pipelines also exposes the count of stages that are
currently waiting. The application should use the standard WAIT macro to wait on this ECB

if it receives the NO_DATA status code, it has no other work to perform, and there are
pipeline stages waiting for the wake-up ECB.

Because the count of stages waiting is decremented as they become able to run, the appli-
cation can see NO_DATA and zero stages waiting if an event occurs after the pipeline
dispatcher has determined that there is no more work, but before the application tests the
counter. In this situation, the application should resume the pipeline once more. If
NO_DATA is still set and the counter is still zero, the pipeline is truly not able to move
further and the application must recover by supplying or consuming data, or it must termi-
nate the pipeline. An alternative strategy is to use the WAITRPL flag and throw the
problem over the fence to CMS/TSO Pipelines.

Using Fitting Stages to Inject and Extract Records from the Pipeline
The PIPFTRPL macro instruction generates the fitting request parameter list, which repres-
ents an action to be performed by a fitting stage. There must be a separate fitting request
parameter list for each fitting stage in the pipeline set.

A request can be in one of the states listed below. An application would normally create
an RPL in the Read or Write state, but it can even create an Idle RPL.

Fitting States and Transitions
The application and the fitting stages cooperate by taking turns at the work to be done. To
describe in one variable both the application’s view of the state of the fitting and
CMS/TSO Pipelines’ view of the state of the fitting, the fitting state field in the RPL has
quite a number of potential values.

Some values indicate that the application is in control of the fitting, while others indicate
that CMS/TSO Pipelines is currently in control of the fitting. The application must not
change an RPL unless the fitting is in one of the states where it is indicated that the appli-
cation may change the state.

Idle The application does not wish any action to take place; CMS/TSO
Pipelines has no pending action to report. An idle request is ignored.
The application can reactivate an idle RPL by taking it to state Read or
Write, as appropriate, at some later time.

Ended The corresponding fitting stage has terminated. The application must not
change the state of such an RPL. To improve efficiency, the RPL should
be removed from the list.

Write The application has provided data to be written into the pipeline by the
fitting stage. The corresponding fitting stage must be first in a pipeline.

The application should store the address of the record in the field that
has the label &P.BUFFER; it should store the length of the record in the
field labelled &P.BUFFER_LENGTH. The contents of the designated storage
area must remain stable until the RPL reaches the W.Done state or the
Ended state.

44 CMS/TSO Pipelines: Programming Interface.  



  
 

W.Resolving A Write request could not be resolved immediately, because no fitting
stage with the specified identifier is active. Typically, this state is
entered when the fitting stage is in a subroutine pipeline that has not yet
been started.

W.Running CMS/TSO Pipelines is processing the request; the data are “in the pipe-
line”. Input data must remain stable.

W.Done The output record has been consumed. The application can now provide
the next record.

Read The application will receive the address and length of the next record on
the input stream of the corresponding fitting stage. This fitting stage
must not be first in a pipeline.

R.Resolving A Read request could not be resolved immediately, because no fitting
stage with the specified identifier is active. Typically, this state is
entered when the fitting stage is in a subroutine pipeline that has not yet
been started.

R.Running CMS/TSO Pipelines is processing the request; data are not yet available.

R.Done Data are available in the request parameter list.

The record is provided by CMS/TSO Pipelines in a buffer that it has
allocated (or one provided by a fitting writing the record into the pipe-
line). The address of the record is stored at the label &P.BUFFER; the
length of the record is at label &P.BUFFER_LENGTH. The contents of the
buffer can be relied upon to be stable only as long as the RPL remains in
the R.Done state.

Consume The fitting stage should consume the record, but it should not prepare to
read further.

Reject The fitting stage is unable to perform the Read or Write requested,
because it is in the wrong position of the pipeline. A reason code is
returned in the request parameter list when this state is entered. The
Rejected state is also entered if the request parameter list contains a state
that is incompatible with the state that the fitting stage is in. (That is,
the application modified the state when the request parameter list was in
a state where it was CMS/TSO Pipelines’ turn to change the state.)

Terminate The corresponding fitting stage should terminate.

T.Resolving A Terminate request could not be resolved immediately, because no
fitting stage with the specified identifier is active. Typically, this state is
entered when the fitting stage is in a subroutine pipeline that has not yet
been started.

Figure 10 on page 46 shows the valid state transitions. Transitions that are marked “Pipe-
line” in the third column are performed by CMS/TSO Pipelines while it is in control.
Transitions that are marked “Application” are performed by the application while it has
control. Several transitions can happen for a request while CMS/TSO Pipelines is in
control; for example, the application might observe a state change directly from Write to
W.Done, except possibly on the first Write.

  Chapter 12. Copipes and Pipeline Fittings 45



  
 

Figure 10. Valid RPL State Transitions

From To By Remarks

Idle Write Application The application wishes to write data into a fitting stage that is
currently idle.

Idle Read Application The application wishes to read data from a fitting stage that is
currently idle.

Idle Terminate Application The application wishes to terminate a fitting stage that is currently
idle.

Write W.Resolving Pipeline No fitting stage is running that has the specified ID.

W.Resolving W.Running Pipeline The ID is resolved. The record is “in the pipeline”.

W.Resolving Reject Pipeline The fitting stage is unable to process the request, because it is not first
in a pipeline and thus supports only Read requests.

W.Running W.Done Pipeline The record has been consumed. The application can provide a new
record.

W.Running Ended Pipeline The fitting stage received end-of-file while writing the record into the
pipeline. The stage has terminated.

W.Done Write Application The application has provided the next record.

W.Done Terminate Application The application will not provide further data. The corresponding
fitting stage should terminate.

Read R.Resolve Pipeline No fitting stage is running that has the specified ID.

R.Resolve R.Running Pipeline No record is currently available on the input to the corresponding
fitting stage.

R.Resolving Reject Pipeline The fitting stage is unable to process the request, because it is first in a
pipeline and thus supports only Write requests.

R.Running R.Done Pipeline The address and length of the record are provided in the RPL. The
input record has not been consumed by the fitting stage.

R.Done Read Application The application has processed the contents of the record and is ready
to receive a new one. The corresponding fitting stage should consume
the input record and read another one.

R.Running Ended Pipeline The corresponding fitting stage has received end-of-file on its primary
input stream. The stage has terminated.

R.Done Consume Application The application does not wish to process further data at this moment,
but it has completed the processing for the record it read and the
record should be consumed by the fitting stage.

Consume Idle Pipeline The corresponding fitting stage has consumed the input record.

R.Done Terminate Application The application does not wish to process further data. The corre-
sponding fitting stage should terminate without consuming the record.

Terminate Ended Pipeline The corresponding fitting stage has terminated.

Terminate T.Resolving Pipeline No fitting stage is running that has the specified ID.

T.Resolving Ended Pipeline The corresponding fitting stage has terminated.

46 CMS/TSO Pipelines: Programming Interface.  



  PIPFTPRM
 

 Be Careful!
� A particular fitting stage can either read or write, but it cannot do both.

� Only one RPL may refer to any particular fitting.

� The FITTING_PTR field of the RPL is resolved to the address of a control block that
represents the fitting stage; the application must not modify the contents.

� When a copipe is inactive, the only way to find its control block is through the anchor,
which you have control over. If you lose the anchor or terminate your application
before the pipeline has completed, you are likely to suffer storage leakage.

� If you resume the copipe after it has completed, results are unpredictable, but invari-
ably unpleasant. Expect an ABEND as your reward.

 Macros

PIPFTPRM—Generate Copipe Communications Area
 

��──PIPFTPRM─ ──┬ ┬─────── ──┬ ┬─────────────────── ─�
 └ ┘─label─ │ │┌ ┐─DSECT──

└ ┘──TYPE= ──┼ ┼─INLINE─
 └ ┘─CSECT──

�─ ──┬ ┬──────────────────────── ──┬ ┬────────────────────────────── ─�
│ │┌ ┐─PIPFTPRM─ └ ┘──FLAGS= ──┬ ┬─┤ Flag ├─────────
└ ┘──,PREFIX= ──┴ ┴─word───── │ │┌ ┐─,────────

└ ┘──( ───
 ┴─┤ Flag ├─ )

�─ ──┬ ┬────────────────── ──┬ ┬────────────────────── ─�

└ ┘──RPL=─┤ A-type ├─ └ ┘──WAITFOR=─┤ A-type ├─

Flag:
├─ ──┬ ┬─NOSTART─── ─┤

  ├ ┤─TERMINATE─
  └ ┘─WAITRPL───

Refer to Figure 12 on page 50 for the definitions of the flags.

label Specify the label for type=csect. Note that the label is not specified in
column one of the card, as is customary.

TYPE Specify DSECT to generate a separate DSECT containing the definition of
this parameter list. Specify INLINE to generate the definition inside
some other section (DSECT or CSECT). Specify CSECT to generate a
parameter list without internal labels (entirely without labels if label is
omitted).

PREFIX Specify the prefix to be used for the labels that are generated when
type=DSECT or type=INLINE is used.

FLAGS Specify flag values to be assembled initially.

RPL Specify the address of the head of the list of RPLs.

WAITFOR Specify the address of the special RPL.

  Chapter 12. Copipes and Pipeline Fittings 47



 PIPFTRPL � PIPRESUM  
 

PIPFTRPL—Generate Fitting Request Parameter List
 

��──PIPFTRPL─ ──┬ ┬─────── ──┬ ┬─────────────────── ─�
 └ ┘─label─ │ │┌ ┐─DSECT──

└ ┘──TYPE= ──┼ ┼─INLINE─
 └ ┘─CSECT──

�─ ──┬ ┬──────────────────────── ──┬ ┬──────────────────────── ─�
  │ │┌ ┐─PIPFTRPL─ │ │┌ ┐─0──────────

└ ┘──,PREFIX= ──┴ ┴─word───── └ ┘──,NEXT= ──┴ ┴─┤ A-type ├─

�─ ──┬ ┬─────────────────────────────── ──┬ ┬──────────────────── ─�
└ ┘──,FITTING= ─── ──┤ StringSpec ├─ │ │┌ ┐─IDLE──

└ ┘──,START= ──┼ ┼─WRITE─
 └ ┘─READ──

�─ ──┬ ┬────────────────────────────── ─�

└ ┘──,BUFFER= ──┬ ┬─(0,0)──────────

└ ┘─┤ StringSpec ├─

label Specify the label for TYPE=CSECT. Note that the label is not specified in
column one of the card, as is customary.

TYPE Specify DSECT to generate a separate DSECT containing the definition of
this parameter list. Specify INLINE to generate the definition inside
some other section (DSECT or CSECT). Specify CSECT to generate a
parameter list without internal labels (entirely without labels if label is
omitted).

PREFIX Specify the prefix to be used for the labels that are generated when
type=DSECT or type=INLINE is used.

NEXT Specify the address of the next request parameter list in the chain.

FITTING Specify the identifier of the fitting stage you wish to reach. This is
specified as the argument of the fitting stage where it is defined in the
pipeline specification or in the ARGS= operand of the PIPSCSTG macro
that defines the stage. Fitting names must be unique across the pipeline
set. If you omit this keyword operand, you must store the fitting name
into the RPL before you make it available to CMS/TSO Pipelines.

START Specify the initial state for the request parameter list. You can specify
IDLE, READ or WRITE.

BUFFER Specify the data buffer for a WRITE request.

PIPRESUM—Resume the Pipeline
 

��──PIPRESUM──communications area─ ──┬ ┬───────────────────── ─�
 │ │┌ ┐─NO──

└ ┘──TERMINATE= ──┴ ┴─YES─

�─ ──┬ ┬─────────────────── ──┬ ┬─────────────────────── ─�

└ ┘──RPL=─┤ Address ├─ └ ┘──WAITFOR=─┤ Address ├─

48 CMS/TSO Pipelines: Programming Interface.  



  PIPRESUM
 

This macro requires a work area to build its parameter list. It assumes that the macro is
issued within a PROC/PROCEND procedure. If you do not use these constructs, you must
code the PIPRESUM macro expansion “by hand”.

communi-
cations area

Specify the address of the PIPFTPRM macro that defines the communi-
cations area as the only positional operand. This operand is specified as
an “Address” type. This operand is required.

TERMINATE Specify YES to force the pipeline to terminate.

RPL Specify the address of a PIPFTRPL macro. This RPL must be the first on
the list of requests. Omit this operand to use the same RPLs as were
used in the previous resume operation.

WAITFOR Specify the address of an RPL that must be ready before the application
can resume.

  Chapter 12. Copipes and Pipeline Fittings 49



 PIPFTPRM  
 

Chapter 13. Copipe Data Areas

This chapter shows the layout of the data areas that are used to communicate with the
CMS/TSO Pipelines copipe support described in this part of the book.

The symbol “&P.” stands for the prefix as specified in the PREFIX= operand of the macro
that defines the data area. The default is the name of the macro.

 PIPFTPRM—Communications Area

Figure 11. PIPFTPRM Data Area

Label Offs Len Description

&P 0 Beginning of data area.

&P.LEVEL 0 1 Communications area level. Assembled as X'01'.

&P.REQTYPE 1 1 Request type. Flags.

&P.STATUS 2 1 Status of the pipeline. Scalar.

3 1 Unused. Must be zero.

&P.RPL 4 4 First RPL on the RPL list.

&P.WAITFOR 8 4 An RPL that must be ready before the application can proceed. The
bit &P.WAITRPL must be on to activate this facility.

12 4 Unused. Must be zero.

&P.ANCHOR 16 4 The pipeline’s anchor. Do not modify this field.

&P.RESUME 20 4 The resume entry point.

&P.AECB 24 4 Pointer to the pipeline’s resume ECB.

&P.AWAITCOUNT 28 4 Pointer to a fullword where the pipeline maintains the count of
stages that are waiting for external events. The application can wait
on the ECB if the counter is positive. (It can also wait if this
counter is zero, but then it will never wake up.)

&P.REQTYPE

Figure 12. Values for

Label Val Description

&P.NOSTART 01 Do not start the pipeline after it has been scanned. The scanner will resume
the application without starting any stages. This bit can be set in the
PIPFTPRM macro.

&P.TERMINATE 02 Terminate the pipeline. First signal all fitting stages to stop. If this does
not terminate the pipeline, it is stalled. This bit can be set by the PIPRESUM

macro.

&P.WAITRPL 04 The designated RPL must be ready or terminated before the application is
resumed. This bit can be set by the PIPFTPRM macro and by the PIPRESUM

macro.

50  Copyright IBM Corp. 1995, 2010



  PIPFTRPL
 

&P.STATUS

Figure 13. Values for

Label Val Description

&P.READY 0 The pipeline has run all stages that can run. fitting stages have run and
changed state. Thus, productive work has been accomplished since the
pipeline was resumed.

&P.DONE 1 The pipeline has completed.

&P.NO_DATA 2 No fitting stage changed state. No productive work has been accomplished
since the pipeline was resumed. The application should inspect the RPL

states and supply or consume data, or it should wait on the ECB provided
(assuming the wait count is positive).

PIPFTRPL—Fitting Request Parameter List

Figure 14. PIPFTRPL Data Area

Label Offs Len Description

&P 0 Beginning of data area.

&P.NEXT 0 4 Pointer to next element.

&P.STATE 4 1 Current state.

&P.PREVSTATE 5 1 State last time the copipe was resumed. The application should not
modify this field.

&P.EXITSTATE 6 1 State last time the copipe returned control to the application. The
application should not modify this field.

&P.REASON 7 1 Reason code if the transition was rejected.

&P.FITTING 8 8 The identifier for the fitting stage with which this RPL should be
associated. When the fitting has been resolved, the first word
contains binary zeros; the second word contains a pointer. The
application should not modify this field while the RPL is not idle.

&P.BUFFER 16 8 The first word contains a pointer to the associated data; the second
word contains its length. The application sets this before setting the
state to Write; the copipe sets this before it returns R.Done.

&P.STATE

Figure 15 (Page 1 of 2). Values for

Label Val Description

&P.IDLE 0 Not active. Ignored by the copipe.

&P.ENDED 1 Not active. Ignored by the copipe.

&P.REJECT 2 Transition rejected by the copipe.

&P.WRITE 3 Application data are ready for the fitting stage to write into the pipeline.

  Chapter 13. Copipe Data Areas 51



 PIPFTRPL  
 

Figure 15 (Page 2 of 2). Values for

Label Val Description

&P.WRESOLVING 4 The copipe is waiting for the specified fitting stage to start. If this state
persists, the fitting identifier is most likely misspelled.

&P.WRUNNING 5 Data in pipeline. The fitting stage is waiting for the output record to be
consumed.

&P.WDONE 6 An output record has been consumed. The application can now provide
another record.

&P.READ 7 The application is ready to accept data from the pipeline.

&P.RRESOLVING 8 The copipe is waiting for the specified fitting stage to start. If this state
persists, the fitting identifier is most likely misspelled.

&P.RRUNNING 9 The fitting stage is waiting for a record to arrive at its primary input stream.

&P.RDONE A An input record is ready; its address and length are stored in the RPL. The
application should move to state Read to consume the record in anticipation
of reading another record.

&P.CONSUME B The fitting stage should consume the current input record and move the RPL

to the idle state.

&P.TERMINATE C The fitting stage should terminate without consuming the current input
record.

&P.TRESOLVING D Waiting for the fitting stage to start.

&P.REASON

Figure 16. Values for

Label Val Description

&P.XITION_OK 0 No error.

&P.NOT_CAPABLE 1 The fitting stage is not at the place in the pipeline where it can perform the
requested read or write operation.

&P.NOT_RESOLVED 2 The requested fitting stage is not yet started.

&P.INVALID_XITION 3 The fitting stage is in a state whence it cannot go to the one requested.

52 CMS/TSO Pipelines: Programming Interface.  



  
 

Part 5. Porting CMS/TSO Pipelines to other Environments

 Copyright IBM Corp. 1995, 2010  53



 System Services Vector  
 

Chapter 14. System Services Vector

CMS/TSO Pipelines encapsulates the interface to some of the services of the underlying
operating system in a layer of system service routines. For example, all requests for
storage eventually reach the one routine that issues the appropriate storage management
function.

Not only does this make it easier for the author to maintain CMS/TSO Pipelines for
multiple platforms, it also enables vendors to support CMS/TSO Pipelines in their own
operating systems by replacing these system services with their own code.

CMS/TSO Pipelines reaches the system service routines via the “system services vector”.
A user can replace parts or all of the system services vector by specifying the sysv param-
eter token. The token contains a pointer to a variable length vector of fullwords. This
vector should be generated by the macro FPLSYSSV. The vector that is actually used by
CMS/TSO Pipelines is constructed by merging the user specified vector with the current
vector or with the system defaults, which are supplied by CMS/TSO Pipelines.

The first fullword of the system services vector contains the count of entries in the vector
(excluding this first word). That is, a null vector consists of a single fullword of binary
zeros.

 Terminology
The system services vector is designed with the CMS multitasking model in mind, but
CMS/TSO Pipelines makes no assumptions about there being processes and threads. In
this chapter, the term “task” will refer to the individual dispatchable unit supported by the
underlying host system.

A task is identified by a sixty-four bit number. The first fullword of this is arbitrarily
called the process ID; the second fullword is equally arbitrarily called the thread ID. A
task ID is a unique combination of process and thread IDs.

The term preemptive task switching describes a multitasking dispatcher that can switch
control between tasks at arbitrary times, for example as a result of an interrupt. OS/390 uses
such a dispatcher. The action of stopping a task temporarily is also called preempting it.

In contrast, both CMS Multitasking and CMS/TSO Pipelines use a coroutine style of
dispatching; both switch between tasks only when a task performs an overt action that
allows a task switch (such as suspending itself or creating another thread).

But CMS/TSO Pipelines supports being run by an operating system that uses preemptive
task switching. Thus, it calls a locking service to serialise access to global resources.

On CMS, the PIPMOD command is used to initialise CMS Pipelines. This command is
normally issued by the PIPE bootstrap module. On z/OS, the initialisation is performed as
part of the first PIPE command (there is no separate bootstrap module).

54  Copyright IBM Corp. 1995, 2010



  System Services Vector
 

Addressing Mode, Supervisor State, Enablement
CMS/TSO Pipelines runs in 31-bit addressing mode; branch entries to it must be in 31-bit
mode.

CMS Pipelines switches to user key when it processes the PIPMOD command; and it
switches back to key zero when it returns. The PIPE nucleus extension is a user nucleus
extension; branch entries to it must be in user key. Both commands must be entered in
supervisor state.

TSO Pipelines runs unauthorised; that is, in problem state and key 8.

CMS/TSO Pipelines itself does not change the supervisor/problem state nor does it enable
interrupts, but REXX does; thus, any REXX stage will enable for interrupts. It is unspecified
which built-in programs are in fact implemented as REXX programs, be that completely or
in parts.

! In general, CMS/TSO Pipelines runs in primary space mode without referencing or
! changing the access registers; it is unlikely that it will work if it is entered in access
! register mode and the access registers do not all contain binary zeros.

! A few stages, such as buffer, instore, outstore, and storage supports an ALET operand to
! specify that data reside in the specified data space. As a result, these stages modify the
! addressing mode and access registers; they restore the addressing mode before calls to the
! pipeline dispatcher, but they do not save or restore the access registers.

 Anchors
CMS/TSO Pipelines accepts, from the system service routines, a global anchor and an
anchor for each task. These anchors are for the sole use of the system service routines;
CMS/TSO Pipelines treats them as “magic cookies”.

The second word of the system services vector is the global anchor. The contents of this
word (which are zero by default) are provided when CMS/TSO Pipelines calls a service
and it does not know which task is associated with the call.

When CMS/TSO Pipelines knows for which task it is calling a service, it supplies the
task’s anchor.

Nota bene: Whether CMS/TSO Pipelines knows is not necessarily the same as whether
CMS/TSO Pipelines ought to know. Also note that CMS/TSO Pipelines does not serialise
access to the anchors.

 Register Conventions
When CMS/TSO Pipelines calls a system service, it supplies parameters in general registers
0 and up.

It usually supplies a standard type-1 save area of eighteen fullwords in general register 13,
but see the Prologue and Epilogue services for exceptions. See also Enqueue and
Dequeue.

It supplies the return address in general register 14.

  Chapter 14. System Services Vector 55



 System Services Vector  
 

It supplies the anchor (either the global one or the task one) in general register 15.

Note that CMS/TSO Pipelines provides no base register for the system service routine.

The system service routine must return with general registers 2 through 13 unchanged
(except as noted for the storage management services). Where no return value is specified
for general register 0 or 1, the contents of the registers need not be restored.

 System Services
The various services are described in the following sections, grouped into the major cate-
gories,

 � Task Management

 � Storage Management

 � Resource Management

 � Exit Management

The first word of the heading for each section, which is the short name for the service, is
also the name of the keyword operand that specifies the entry point for the service when
you code the FPLSYSSV macro to build your system services vector.

 Task Management

TaskID—Return Process and Thread ID
CMS/TSO Pipelines calls the TaskID service to obtain a unique identifier and an anchor for
the current task. CMS/TSO Pipelines uses this information to determine whether or not a
PIPE recursion is from a known thread by comparing the values with values returned previ-
ously. It also passes the information to the Resume service; it does not interpret or use the
values returned in any other way.

 Input: 

R13 Standard type-1 save area.

R14 Return address.

R15 The global anchor.

Output:  Registers 15 and 0 set to a unique identification of the task.

R0 The thread ID.

R1 The anchor associated with the task.

R15 The process ID.

Suspend—Suspend the Running Task
CMS/TSO Pipelines calls the Suspend service when it has no stages that can run and at
least one of its stages is waiting on an ECB through the PIPWECB macro instruction. (The
pipeline set would be stalled if no stages were waiting on an ECB.)

 Input: 

56 CMS/TSO Pipelines: Programming Interface.  



  System Services Vector
 

R1 The address of a CMS WAITECB parameter list (three doublewords), which is followed
immediately by a standard OS ECB. The storage area is private to the task.

R13 Standard type-1 save area.

R14 Return address.

R15 The task’s anchor.

 Output: None.

Resume—Resume a Task
CMS/TSO Pipelines calls the Resume service when an asynchronous exit has posted a
pipeline ECB on which a stage is waiting. Thus, the stage can resume after a PIPWECB

macro. This service can also be called from a different thread as the result of a PIPPOST

macro instruction.

 Input: 

R0 The address of a CMS WAITECB parameter list (three doublewords), which is followed
immediately by a standard OS ECB (that is, the contents of general register 1 on the
corresponding call to the Suspend service).

R1 The thread ID to be resumed. This was returned in general register 0 by the TaskID
service.

R2 The process ID to be resumed. This was returned in general register 15 by the
TaskID service.

R13 Standard type-1 save area.

R14 Return address.

R15 The task’s anchor.

 Output: None.

 Storage Management
Storage management services are called in cases where no work area is available; that is,
storage management is called precisely to allocate a work area. As a result, the two
storage allocation services and the release service do not follow standard type-1 save area
conventions.

There are three types of storage management services:

� Allocate and return task storage. Task storage is returned before the end of the task or
process that allocates the storage.

� Extend task storage.

� Allocate and return permanent storage. Permanent storage is allocated by one task or
process and possibly returned by some other process; or not returned at all, depending
on the operating system. On CMS, dropping the PIPMOD nucleus extension causes all
permanent storage to be returned; on ABEND recovery CMS Pipelines notes that its
permanent storage is no longer allocated. On z/OS, permanent storage is recovered by
the operating system when the job step task terminates.

When the task storage managers are called from prologue and epilogue code, general
register 13 will point to the save area provided by the system. The service routines may

  Chapter 14. System Services Vector 57



 System Services Vector  
 

use general registers 2 through 6 as additional work space; the storage allocation routines
must restore those registers they use from the save area before returning; the storage
release macro does not need to restore those registers.

General registers 7 through 13 must not be modified.

The extend service and the permanent storage management services are never called from
a prologue; as a result they use standard calling conventions.

Below—Allocate Storage Below the 16M Line
CMS/TSO Pipelines calls the Below service to allocate storage below the 16-megabyte line.
This storage is typically used for a parameter list for a 24-bit system service (e.g., a Data
Control Block).

 Input: 

R0 The number of doublewords required.

R13 Standard type-1 save area. Registers have already been saved into this save area;
thus, the service routine must not store into it. But it must restore registers 2
through 6 from this save area, if they are used as work registers.

R14 Return address.

R15 The global anchor.

 Output: 

R0 The number of doublewords actually allocated. This number may be larger than the
number requested. Except when the Extend service has been used successfully,
CMS/TSO Pipelines returns the amount of storage actually allocated (rather than the
amount requested). When the storage is allocated as part of a buffer, CMS/TSO
Pipelines may use any additional storage that the storage manager might provide.

R1 The address of the first byte of the storage area allocated.

R15 Return code. 0 when storage is allocated; 1 when storage is not available.

Above—Allocate Storage Anywhere
CMS/TSO Pipelines calls the Above service to allocate an area of storage that may be
allocated anywhere within the address space. Other than for the location of the area allo-
cated, the Above service is identical to the Below one.

 Release—Return Storage
CMS/TSO Pipelines calls the Release service to return an area of storage that was previ-
ously allocated by the Below or the Above service. It never splits an allocated area; if the
Extend service is provided and an area has been extended successfully, CMS/TSO Pipelines
will return all storage in an extended area as a single unit.

 Input: 

R0 The number of doublewords to release.

R1 The address of the first byte of the storage area to release.

R13 Standard type-1 save area. Registers have already been saved into this save area;
thus, the service routine must not store into it.

58 CMS/TSO Pipelines: Programming Interface.  



  System Services Vector
 

R14 Return address.

R15 The global anchor.

 Output: None.

Extend—Try to Extend an Allocated Area
CMS/TSO Pipelines calls the Extend service to allocate additional storage at the end of an
already allocated block of storage.

 Input: 

R0 The number of doublewords to add to the allocation.

R1 The address where storage should be allocated.

R13 Standard type-1 save area.

R14 Return address.

R15 The global anchor.

 Output: 

R0 The number of doublewords actually allocated. This number may be larger than the
number requested.

R15 The return code. 0 means that storage has been allocated. 1 means that storage is
not available; this may be because the storage area is already in use or because the
underlying system does not support allocation of storage at a particular address.

Persistent—Allocate Persistent Storage Anywhere
CMS/TSO Pipelines calls the Persistent service to allocate an area of storage that must last
longer than the pipeline specification. The storage may be allocated anywhere within the
address space.

Input and output register conventions for the Persistent service is identical to the Above
one. General register 13 points to a standard type-1 save area for use by the service.

 ReleasePersistent—Return Storage
CMS/TSO Pipelines calls the ReleasePersistent service to return an area of storage that was
previously allocated by the Persistent service. CMS/TSO Pipelines never extends persistent
storage. It never splits an allocated area. Input and output register conventions for the
ReleasePersistent service is identical to the Release one. General register 13 points to a
standard type-1 save area for use by the service.

 Resource Management

Enqueue—Serialise Access to a Global Area
CMS/TSO Pipelines calls the Enqueue service when it needs to update its global data area
in a way that cannot be done atomically by the System/390 hardware. That is, the
Enqueue service is called when CMS/TSO Pipelines needs write access to its global area,
for example to update a value that is larger than a doubleword.

  Chapter 14. System Services Vector 59



 System Services Vector  
 

The Enqueue service must ensure that only one task can enqueue on a particular address at
any one time; it can assume that the area will be enqueued for a short period. The next
system service call in the task will be for the Dequeue service.

 Input: 

R1 The address of a thirty-two byte area of storage for use by the Enqueue service. The
same area is used on all tasks when they access that particular area of storage.
Thus, the system service routine can build a semaphore or some other
synchronisation mechanism in this area. This area is initialised to binary zeros.

R13 Standard type-1 save area. The forward pointer at offset 8 of this save area points to
a 104-byte work area (which can be considered a standard type-1 save area with a
thirty-two byte extension).

R14 Return address.

R15 The global anchor.

 Output: None.

Dequeue—Release Exclusive Access to a Global Area
CMS/TSO Pipelines calls the Dequeue service when it has finished updating a global area;
the area is now available to be enqueued by other tasks.

 Input: 

R1 The address of the thirty-two byte area of storage that was passed to the Enqueue
service to obtain exclusive access to the area.

R13 Standard type-1 save area. The forward pointer at offset 8 of this save area points to
a 104-byte work area (which can be considered a standard type-1 save area with a
thirty-two byte extension).

R14 Return address.

R15 The global anchor.

 Output: None.

 Exit Management

Timer—Set TOD Clock Exit
CMS/TSO Pipelines calls the Timer service to establish or cancel an asynchronous exit that
is to be called at some future time. A call to the timer service cancels any previous
request (that is, the operating system must not stack these requests). The exit must be
driven once (unless it is cancelled).

 Input: 

R0 If general register 0 is zero, the existing exit must be cancelled (if it is still estab-
lished). General registers R1 through R3 are not used.

If general register 0 is nonzero, it contains the address of the exit to be driven.

R1 A “user word” to be provided to the exit in general register 1 when it is called.

R2 The leftmost word of the TOD clock value at which time the exit must be driven.

60 CMS/TSO Pipelines: Programming Interface.  



  System Services Vector
 

R3 The rightmost word of the TOD clock value at which time the exit must be driven.

R13 Standard type-1 save area.

R14 Return address.

R15 The global anchor.

 Output: 

R15 The return code. 0 means that the exit is established. 1 means that the current time
is later than the TOD clock value specified (that is, the event has already occurred).

Entry Conditions for the Exit:  

R1 The “user word” supplied in general register 1 when the exit was established.

The exit will return with general registers 2 through 13 unchanged. The exit may call the
Timer service to establish a new event. The operating system must not drive the timer exit
recursively.

 Programming Notes

 Enqueue
The Enqueue service should make no assumption that all enqueues will be for the same
area; but clearly it will suffice to enter a “must complete” mode which prevents any task
switching.

 Storage Management
The implementation may elect to treat requests for persistent storage the same as requests
for Above. The default CMS system service routine does so. The default TSO system
service routine allocates persistent storage from subpool 132.

Suspend and Resume
The programmer should note that CMS/TSO Pipelines cannot avoid a race between a call
to the Suspend service and the corresponding call to the Resume service, even on systems
that do not perform preemptive task switching.

 Global Anchor
If the operating system wishes to use a nonzero global anchor, it may be easier to issue
two PIPMOD commands. The first one should be for a vector of two fullwords, where the
second one contains the global anchor. The second PIPMOD command should then refer-
ence the system services vector that has been generated by the FPLSYSSV macro with the
TYPE=INLINE operand.

Issuing two PIPMOD commands assumes that CMS/TSO Pipelines can use the default
storage management for its global data area. If this is not the case, the operating system
must build a system services vector that contains the anchor as well as addresses of the
system service routines.

If reentrancy is not required, the operating system can generate the system services vector
with the TYPE=CSECT operand and then store the anchor at the address FPLSYSANCHOR

(assuming the default prefix is used).

  Chapter 14. System Services Vector 61



 System Services Vector  
 

If reentrancy (or read only code) is required, the operating system must build the system
services vector in dynamically allocated storage. It can use FPLSYSSV TYPE=DSECT macro
to define the system services vector in its work area. It can then copy the system services
vector expanded by FPLSYSSV TYPE=INLINE into this area and then store the global anchor.

The CMS Pipelines PIPMOD Command
On CMS, the PIPMOD nucleus extension supports being invoked with a call type of
“program” and a parameter token list that contains a sysv token, which can optionally be
followed by a usex token.

CMS Pipelines will use the system services vector specified for all storage management
when initialised in this way.

The sysv token specifies the address of the system services vector override. This service
vector is used on all requests that are not related to a pipeline set. It also supplies the
default when a PIPE command is issued on a thread that has no active pipeline.

The usex token is valid only through this interface; it is four fullwords. It is supported
only as the first call after the PIPMOD nucleus extension is established (be that by
NUCXLOAD or SEGMENT LOAD) or immediately after CMS ABEND recovery. The second
fullword should contain binary zeros; the last two fullwords specify the name of the
nucleus extension to be set up to create a pipeline set. The usex parameter token serves
the function that is normally accomplished by the PIPMOD INSTALL command.

Figure 17. Parameter Token Summary

Type Word 1 Word 2 Word 3

sysv Address of the system
services vector.

usex 0 First four characters of
nucleus extension.

Last four characters of
nucleus extension.

Merging the PIPMOD INSTALL Token
When the sysv parameter token is specified, the words in the vector to which it points
override the existing system services vector. Each word can have these values:

0 The entry is not modified. The default or existing entry is retained.

-1 The CMS/TSO Pipelines default is requested. This retracts an exit that was
previously established.

other The entry is modified to use the specified address as the entry point for the
system service routine.

The vector specified with the PIPE command governs the pipeline set being created and
recursions from within this pipeline set.

62 CMS/TSO Pipelines: Programming Interface.  



  System Services Vector
 

 Macro
Use the macro FPLSYSSV to generate the services vector override that is specified in the
sysv parameter token.

FPLSYSSV—Build a System Services Vector
The FPLSYSSV macro expands into a list of address constants. The TYPE keyword deter-
mines how the list of addresses should be generated.

 

┌ ┐──TYPE=DSECT ─ ┌ ┐──PREFIX=FPLSYS
��──label──FPLSYSSV─ ──┼ ┼──TYPE=CSECT ─ ──┴ ┴──PREFIX=word ── ─�

└ ┘──TYPE=INLINE

�─ ──┬ ┬──────────────── ──┬ ┬──────────────── ──┬ ┬───────────────── ─�
└ ┘──ANCHOR=address └ ┘──TASKID=address └ ┘──ENQUEUE=address

�─ ──┬ ┬───────────────── ──┬ ┬─────────────── ──┬ ┬─────────────── ─�
└ ┘──DEQUEUE=address └ ┘──BELOW=address └ ┘──ABOVE=address

�─ ──┬ ┬───────────────── ──┬ ┬──────────────── ──┬ ┬───────────────── ─�
└ ┘──RELEASE=address └ ┘──EXTEND=address └ ┘──SUSPEND=address

�─ ──┬ ┬──────────────── ─�

└ ┘──RESUME=address

Notes:

1. A certain amount of reasonableness is assumed in the use of the system services
vector, but this is not enforced.

2. If the Enqueue service is provided, the Dequeue service must be provided as well.

3. If the operating system does not use the default storage management for the operating
environment for which CMS/TSO Pipelines is generated, it must supply all four
storage management services, or none.

4. Either both of the Suspend and the Resume services must be specified, or none.

label The label for the generated system services vector. This is required for
TYPE=DSECT.

TYPE DSECT The constants are in a DSECT and have labels attached. The
label is used as name of the DSECT.

CSECT The constants are in the current section and have labels
attached.

INLINE The constants are in the current section and have no labels
attached. This is the recommended way of generating a
system services vector.

PREFIX The prefix to use when labels are attached to constants. The actual label
is composed of the prefix and the keyword name for the routine. The
unadorned prefix is generated for the count (the first word). You can
specify a null prefix.

address Specify the label of the entry point for the routine; or zero to use the
existing entry or default; or minus one to replace the existing entry with
the default. Specifying minus one in effect retracts an existing override.
The default for omitted keyword operands is zero.

  Chapter 14. System Services Vector 63



 System Services Vector  
 

64 CMS/TSO Pipelines: Programming Interface.  



  Sample Programs
 

 Part 6. Sample Programs

 Copyright IBM Corp. 1995, 2010  65



 Sample Programs  
 

 Chapter 15. Hello World!

No collection of samples can be complete without the proverbial greeting. This example
shows how to issue a pipeline that writes a literal string to the terminal as an encode
pipeline specification.

PGMISAMP TITLE ' PIPE Command Programming Sample Program *

COPYRIGHT IBM Danmark A/S'

 EJECT

***********************************************************************

* *

* Hello, World. *

* *

* Run an encoded pipeline to write a line on the terminal. *

* *

* Change activity: *

* 15 Nov 1995 New module by John P. Hartmann, DKIBMVM2(JOHN) *

* *

***********************************************************************

 SPACE 2

PGMISAMP CSECT ,

PGMISAMP AMODE ANY

PGMISAMP RMODE ANY

 DMSPDEFS , Drag in system values

 SPACE 1

 STM 14,12,12(13)

 BALR 12,0

 USING *,12

 CMSCALL CALLTYP=PROGRAM,PLIST=PIPE

 L 14,12(,13)

 LM 0,12,20(13)

 BR 14

 SPACE 1

 PIPTPARM PIPE,(ENCD,PSPEC),CMS=YES

 SPACE 1

 PIPSCBLK PSPEC,TYPE=RUNPIPE,NAME='test1'

 PIPSCSTG TYPE=BEGIN

 PIPSCSTG TYPE=STAGE,VERB='literal',ARGS='Hello, World!'

 PIPSCSTG TYPE=STAGE,VERB='console'

 PIPSCSTG TYPE=DONE

 SPACE 1

 END PGMISAMP

Note the use of the DMSPDEFS macro, which defines several symbolic constants that are
used by the other macros.

 load pgmisamp (start

�DMSLIO740I Execution begins...

�Hello, World!

�Ready; T=0.05/0.11 10:26:41

66  Copyright IBM Corp. 1995, 2010



  Sample Programs
 

Chapter 16. Sample spec Function Package

This example shows a complete module. The function SUM takes 1 to 10 integer argu-
ments and produces an integer result.

When this program is combined with FPLNXH and FPLNXG into a filter package (that
contains no filters), spec will resolve the function name SUM to the function in this
package (unless someone installed another filter package in front of this one).

FUN TITLE ' User function test case for SPEC +00010000

COPYRIGHT IBM Danmark ApS 2010' 00020000

 COPY PGMID 00030000

 SPACE 2 00040000

*********************************************************************** 00050000

* * 00060000

* Test case for a filter package that contains user-written * 00070000

* functions for spec. * 00080000

* * 00090000

* Change activity: * 00100000

* 11 Apr 2010 New module by John P. Hartmann, CPHART(JOHN) * 00110000

* * 00120000

*********************************************************************** 00130000

 SPACE 2 00140000

FPLFUN MODBEG FREETYPE=NONE 00150000

 DMSPDEFS VECTOR=R9,VECTOR2=YES 00160000

 FPLSPCTR PREFIX=C 00170000

 COPY FPLFUNTB 00180000

 COPY FPLFUNTE 00190000

 FPLFUNTB , Flags 00200000

 FPLFUNTE , Define length 00210000

 EJECT 00220000

*********************************************************************** 00230000

* * 00240000

* Sum a series of binary numbers * 00250000

* * 00260000

*********************************************************************** 00270000

 SPACE 2 00280000

SUMIT PROC SAREA=HLLSTACK,ENTRY=NO,WORKBASE=R11 00290000

 PBEGIN , 00300000

 PIPVERV2 EP=SPVTI 00310000

 LTR R15,R15 00320000

 PIPERM 1000,EXIT,COND=NOTPOSITIVE,SUB='FPLSPVTI' 00330000

 LR R7,R2 Move counter base 00340000

 LR R8,R3 00350000

 LR R6,R0 Result 00360000

 ZIP R0 Sum 00370000

 USING C_SECT,R7 00380000

 REPEAT , 00390000

 CLI C_SIGN,C_SIGNOMITTED 00400000

 CONTINUE COND=EQUAL 00410000

 CLI C_SIGN,C_SIGNBIN 00420000

 PIPERM 728,EXIT,COND=NOTEQUAL, +00430000

 SUB=('Not binary:',(C_SIGN,1,HEX)) 00440000

 A R0,C_BINARY 00450000

 UNTIL INCR=(R7,C_LENGTH),BCT=R8 00460000

 LR R7,R6 Get result 00470000

 Copyright IBM Corp. 1995, 2010  67



 Sample Programs  
 

 ST R0,C_BINARY 00480000

 MVI C_SIGN,C_SIGNBIN 00490000

 DROP R7 00500000

 ZIP R15 00510000

 PEXIT RC=(R15) 00520000

 PROCEND , 00530000

 EJECT 00540000

*********************************************************************** 00550000

* * 00560000

* Function table * 00570000

* * 00580000

*********************************************************************** 00590000

 SPACE 2 00600000

 ENTRY &MODULE.TB 00610000

&MODULE.TB FPLFUNTB TYPE=CSECT 00620000

 FPLFUNTE SUM,SUMIT,RESULT=INT,MAX=10, +00630000

 ARGS=(INT,(INT,OPT,SAME)) 00640000

 FPLFUNTN , 00650000

 MODEND PRINT=GEN 00660000

A gentle warning: You are not likely to succeed if you try just to pick a few lines out of
the above program if your function deals with string arguments.

Generating the Filter Package
global txtlib fpllib

load fplnxh fplnxg fplfun

genmod funpack ( from fplnxh

68 CMS/TSO Pipelines: Programming Interface.  



  
 

 Notices

This information was developed for products and services
offered in the U.S.A.

IBM may not offer the products, services, or features
discussed in this document in other countries. Consult your
local IBM representative for information on the products and
services currently available in your area. Any reference to
an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual prop-
erty right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications
covering subject matter described in this document. The
furnishing of this document does not grant you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United
Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLI-
CATION "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in
new editions of the publication. IBM may make improve-
ments and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obli-
gation to you.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs and
other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM Corporation

Mail Station P3

2455 South Road

Poughkeepsie, New York 12601-5400

U.S.A.

Attention: Information Request

Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a
fee.

The licensed program described in this document and all
licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used
in daily business operations. To illustrate them as
completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in
source language, which illustrate programming techniques on
various operating platforms. You may copy, modify, and
distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to
the application programming interface for the operating plat-
form for which the sample programs are written. These
examples have not been thoroughly tested under all condi-
tions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Programming Interface Information
This book primarily documents information that is NOT
intended to be used as Programming Interfaces of CMS/TSO
Pipelines.

This book also documents intended Programming Interfaces
that allow the customer to write programs to obtain the
services of CMS/TSO Pipelines. This information is
identified where it occurs by an introductory statement to a
chapter.

 Copyright IBM Corp. 1995, 2010  69



  
 

 Trademarks
The following terms are trademarks of the International Busi-
ness Machines Corporation in the United States, or other
countries, or both:

AT IBMLink SQL/DS
BatchPipes IPDS System/360
BookManager MVS System/370
BookMaster MVS/DFP System/390
C/370 MVS/ESA VM/ESA
CT Notes VTAM

DB2 OS/390 WebSphere
DFSORT Print Services Facility z/Architecture
DRDA PROFS z/OS
ECKD RACF z/VM
GDDM S/390
IBM SAA

Enterprise Systems Architecture/390
Intelligent Printer Data Stream
Language Environment

UNIX is a registered trademark of The Open Group in the
United States and other countries.

70 CMS/TSO Pipelines: Programming Interface.  



  Index
 

 Index

Special Characters
fitting 38
fitting mode 4
fitting requests 41

A
Above 58
Addressing in DSECTs 14
ASSEMBLE

FPLFUN 67

B
Below 58

C
CALLTYP=EPLIST 14
CALLTYP=PROGRAM 14
CMSCALL 2, 14
Copipes 38
COPY=NO 14
Coroutine 54

D
DELETE 3
Dequeue 60
DMSPDEFS 66
DMSPFP 19
DSECT

Addressing 14

E
ECB 42
encd 4
Encoded pipeline specification 38, 7
Enqueue 59
EPTABLE 23

REXXES 23
Extend 59
External events 42

F
filterpack 18
fitg 4
fitting 41
Fitting identifier

Scope 42

flag 4
FLNXG 19
FPLEPTBL 20
FPLFLTPK 19
FPLFUN

ASSEMBLE 67
FPLGMS 22
FPLGRXTX 23
FPLNXF 19
FPLNXH 19
FPLPIPE command 3
FPLSPCTR 29
FPLSPVES 29
FPLSYSSV 54

G
GENMSG 22

L
LINK 3
LOAD 3

M
Macros

FPLSYSSV 54
msgl 4

N
NUCEXT 3
NUCXMAP 3

P
Parameter tokens

encd 4
fitg 4
flag 4
msgl 4
pipe 4
rc 5
sysv 5, 62
usex 62
uwrd 5

Persistent 59
PIPBFRAP 31
PIPBFRLD 31
PIPBUSER 34
PIPCALL 30

 Copyright IBM Corp. 1995, 2010  71



 Index  
 

PIPDESC 12, 21
pipe 4
PIPE 54
PIPE command 3
PIPEBLOK 35
PIPEPT 20
PIPEPTED 21
PIPEPTEN 20
PIPFTPRM 40
PIPFTRPL 44
PIPGLOBUSER 34
PIPHUWRD 34
PIPMISC 7
PIPMOD 19, 54
PIPNXF 19
PIPPOST 57
PIPRESUM 41, 43
PIPSCBLK 7
PIPSCSTG 7
PIPSPSLW 29
PIPTHRDUWRD 34
PIPTPARM 6
PIPUWRD 35
PIPVUWRD 34
PIPWECB 56
POPEN 37
Preemptive task switching 54

R
rc 5
Release 58
ReleasePersistent 59
Resume 38, 57
REXXES 23

EPTABLE 23
RITA 9
runpipe 38

S
SCBLOCK 3
Scope of fitting identifier 42
Status codes 41
Suspend 56
System Service

Above 58
Below 58
Dequeue 60
Enqueue 59
Extend 59
Persistent 59
Release 58
ReleasePersistent 59
Resume 57
Suspend 56

System Service (continued)
TaskID 56
Timer 60

system service routines 54
System Services Vector 54
sysv 5, 62

T
Thread 56
Timer 60

U
usex 62
uwrd 5

W
WAIT 44
WAITECB 57
Waiting 42
Waiting for external events 42
Wake-up ECB 41, 42

72 CMS/TSO Pipelines: Programming Interface.  



 

 



����

Program Number: 5741-A07

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

JH95-0068-03



Spine inform
ation:

�
�

�
C

M
S/T

SO
 Pipelines

P
IP

E
 C

om
m

and P
rogram

m
ing Interface

1.1.12

 


	Contents
	Part 1.  Issuing Pipelines Programmatically
	Chapter 1.  Issuing Pipeline Requests with Parameter Tokens
	Getting to the Pipeline
	CMS
	MVS

	Parameter Token List
	Parameter Token Types

	Macro
	PIPTPARM—Generate Parameter Token List


	Chapter 2.  Encoded Pipeline Speciﬁcations
	Macros
	PIPSCBLK—Generate Encoded Pipeline Speciﬁcation
	PIPSCSTG—Generate Part of an Encoded Pipeline Speciﬁcation


	Chapter 3.  Specifying Addresses and Lengths in Control Blocks
	Using S-type References on CMS
	Syntax Summary


	Part 2.  Filter Packages
	Chapter 4.  Overview of Filter Packages
	Installation and Retraction
	Interface Levels
	PIPNXF, DMSPFP, and FPLNXF
	FPLNXG
	FPLNXH
	Summary of Interface Modules


	Chapter 5.  Entry Point Table
	Macros to Assemble an Entry Point Table
	PIPEPT—Open an Entry Point Table
	PIPEPTEN—Deﬁne an Entry Point
	PIPEPTED—End of Entry Point Table
	Example


	Chapter 6.  Message Text Table
	FPLGMS—Generate Message Text Object Module
	Example


	Chapter 7.  Generating an Object Module Containing REXX Stages
	FPLGRXTX—Generate REXX Filters Object Module
	Example


	Chapter 8.  User Written Functions for spec
	Deﬁning Functions to CMS/TSO Pipelines
	FPLFUNTB—Function Table Header
	FPLFUNTE—Function Table Entry
	FPLFUNTN—End of Function Table
	Example of REXX Function Deﬁnitions

	Function Entry Conditions
	Format of the Result and an Argument
	The Sign Nibble
	Data Fields

	CMS/TSO Pipelines Subroutines to Support Functions
	Supporting Entry Points You Can PIPCALL
	Macros


	Chapter 9.  Generating the Filter Package Module

	Part 3.  Miscellaneous Interfaces
	Chapter 10.  CMS/TSO Pipelines User Words

	Part 4.  Copipes
	Chapter 11.  Overview of Copipes
	General Notes

	Chapter 12.  Copipes and Pipeline Fittings
	Starting a Copipe
	Resuming a Copipe
	Terminating a Copipe
	Using Stages that Wait for External Events
	Using Fitting Stages to Inject and Extract Records from the Pipeline
	Fitting States and Transitions
	Be Careful!

	Macros
	PIPFTPRM—Generate Copipe Communications Area
	PIPFTRPL—Generate Fitting Request Parameter List
	PIPRESUM—Resume the Pipeline


	Chapter 13.  Copipe Data Areas
	PIPFTPRM—Communications Area
	PIPFTRPL—Fitting Request Parameter List


	Part 5.  Porting CMS/TSO Pipelines to other Environments
	Chapter 14.  System Services Vector
	Terminology
	Addressing Mode, Supervisor State, Enablement
	Anchors
	Register Conventions
	System Services
	Task Management
	TaskID—Return Process and Thread ID
	Suspend—Suspend the Running Task
	Resume—Resume a Task

	Storage Management
	Below—Allocate Storage Below the 16M Line
	Above—Allocate Storage Anywhere
	Release—Return Storage
	Extend—Try to Extend an Allocated Area
	Persistent—Allocate Persistent Storage Anywhere
	ReleasePersistent—Return Storage

	Resource Management
	Enqueue—Serialise Access to a Global Area
	Dequeue—Release Exclusive Access to a Global Area

	Exit Management
	Timer—Set TOD Clock Exit

	Programming Notes
	Enqueue
	Storage Management
	Suspend and Resume
	Global Anchor

	The CMS Pipelines PIPMOD Command
	Merging the PIPMOD INSTALL Token
	Macro
	FPLSYSSV—Build a System Services Vector



	Part 6.  Sample Programs
	Chapter 15.  Hello World!
	Chapter 16.  Sample spec Function Package
	Generating the Filter Package

	Notices
	Programming Interface Information
	Trademarks

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	L
	M
	N
	P
	R
	S
	T
	U
	W



