
PIPESERV 1.2.4
A Pipeline Server Facility

14 May 2002

Finn Skovgaard

E-mail: finn@skovgaard.org
URL: http://skovgaard.org/

Acknowledgments

The scheduling capabilities of PIPESERV are inspired by TODEVENT, created by Patrick Hallows.

John Hartmann created CMS Pipelines. Without it, there would have been no PIPESERV. He also patiently
answered an endless row of pipeline questions during the years, thereby significantly improving the design of
PIPESERV. Without John's 24 hour support correcting weird bugs in obscure parts of CMS Pipelines used by
PIPESERV, it would never have got off the ground.

During my 1.5 years of absence from IBM, Steve Hayes of IBM UK willingly took PIPESERV under his wings
and completed the timing algorithms, and he significantly improved the robustness of the code.

During the same period, Michel Casabona of IBM France pointed out various bugs, fixed them, and generally
improved the code.

Hilar Hittinger of IBM Germany has done extensive testing of PIPESERV.

The vast majority of PIPESERV is the work of Finn Skovgaard.

Edition 1.2.6 (14 May 2002)

This edition applies to version 1.2.4 and later of PIPESERV - A Pipeline Server Facility.

K Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Contents iii

Preface iv
What is PIPESERV? iv
Syntax Notation and Typography iv
Examples iv

Summary of changes 1
Edition 1.2.6, 3 May 2002 1
Edition 1.2.5, 12 April 2002 1
Edition 1.2.4, 3 August 2000 1
Edition 1.2.3, 11 May 2000 1
Edition 1.2.2, 21 May 1999 1
Edition 1.2.1, 15 April 1999 1
Edition 1.1.1, 4 April 1997 1
Edition 1.1, 22 November 1996 2
Edition 1.0, 14 November 1996 2
Edition 1.0 draft, 28 September 1994 2
Edition 0.19, 15 July 1994 2
Edition 0.18, 27 May 1994 2
Edition 0.17, 20 May 1994 2

Known problems 2
Timer weekday ignored 2

Features overview 3
Basic features 3
Optional features 3
Optional programming features 4
Overview 5

Planning and Installation 6
Requirements 6
Installation 6
Tailoring 7

PIPESERV CONFIG 7
PIPESERV AUTHUSER 8
PIPESERV INITCMD 9

Getting started 10

PIPESERV syntax 13

PIPESERV commands 15
Managing console input 15

CONSOLE 16
IMMCMD 16

Command syntax 16
host command 16
CMD 17
ADDRESS (subcommand environment) 17

 Contents iii

DEBUG 18
PQUERY 18
REMINDER 20
RESTART 20
REXX 20
RLDDATA 21
STOP 21
TIMER 22

Creating a timer request 22
Time keywords 22
Date keywords 24
Repeat keyword 25
Nodeid keyword 25
Range keyword 25
Action keywords 25
String keyword 26
Request types 26

Querying a timer request 27
Deleting a timer request 28
Querying the format of a timer stream output record 29

Programming interface 30
CMS stack and PIPESERV INITCMD file 30
Input and Output Streams 30

Log input stream 30
Command input stream 30
Alternate command input stream 30
CP *MSG IUCV output streams 31
Stack output stream 32
Console output stream 32
Reader file output streams 32
Timer output stream 32
Command output stream 32
Alternate command output stream 32
rc output stream 32
icmd output stream 32

Pre-processing exits 32
Synchronous IUCV command interface 33

Programming Guide 34
Using HI and HX 34
Stopping your application when PIPESERV stops 34
Implementing your own application commands 35
Serial connections to PIPESERV 36

Monitoring reader files 36
Running PIPESERV in parallel with other pipeline stages 37

Collecting EREP, Account and Symptom records 37
Real-life example of collecting account records 40
Writing your own stages for parallel processing 40

Using PIPESERV with an active, parallel XEDIT environment 41
Use of the synchronous IUCV interface in the server 42

Restrictions 43

iv PIPESERV

Input & output stream record formats 45
cmd input stream 45
cmdt input stream 45
log input stream 45
CP *MSG IUCV output streams 45
stac output stream 45
cons output stream 46
rdr and irdr file output streams 46
tmr output stream 47
cmd output stream 49
cmdt output stream 49
rc output stream 49
icmd output stream 50

Pre-processing exit stream record formats 51
comx exit 51
cmdx exit 51
cmtx exit 51
icmx exit 51
conx exit 52
stax exit 52
msgx exit 52
smsx exit 52
logx exit 52

Log file format 53
Log record types 53

PIPESERV return codes 54

Program logic 56
Diagram notation 56
PIPESERV REXX 56

Index 60

 Contents v

 Preface

What is PIPESERV?
PIPESERV is a pipeline stage that can run under VM.

It is a virtual machine driver with facilities like command authorisation, IUCV con-
nection, timer interrupts and easy to use information about reader files.

The fact that PIPESERV runs as a pipeline stage makes it differ from other servers like
PROP, TODEVENT, HMF, APBOX and VMSERVE, that traditionally run as host com-
mands.

PIPESERV may run without being connected to any other pipeline stages. The user has
the option of connecting to one or more input or output streams to make use of some
more features of PIPESERV.

As PIPESERV runs as a stage, the user may run other pipeline stages in parallel with
PIPESERV

At any time, the console of the virtual machine is available for command execution.

Syntax Notation and Typography
The syntax diagrams follow the standard used by the CMS Pipelines Reference Manual.

References to built-in programs from CMS Pipelines, PIPESERV commands, and
PIPESERV input and output streams are written in lowercase italics.

Other CMS, pipeline or PIPESERV keywords are written in SMALL UPPERCASE TYPE.

Command examples and samples are written in monospace Gothic type.

 Examples
Examples like sample terminal sessions and program source files are set in monospace
Gothic type. The first position of a line of a sample terminal session indicates whether
the line was typed on the terminal (blank) or was a response (�).

vi PIPESERV

Summary of changes

Edition 1.2.6, 3 May 2002
� Version 1.2.4 sublevel 0 has been described. This level introduces support for the

new IUCV stages in CMS Pipelines, and it updates the synchronous IUCV interface
to use supported Pipeline stages, thus making the requirement for PIPSYSF
MODULE obsolete.

Edition 1.2.5, 12 April 2002
� Version 1.2.3 sublevel 1 has been described.

� The chapter describing the PIPESERV change history has been taken out of this doc-
ument and placed in a flat file named PIPESERV CHANGES.

Edition 1.2.4, 3 August 2000
� Version 1.2.3 has been described.

� Clarification of the use of the cmdt and rc streams.

Edition 1.2.3, 11 May 2000
� The indicator for reader files in nohold was incorrectly stated in “rdr and irdr file

output streams” on page 46.

� Version 1.2.2 sublevels 1, 2 and 3 have been described.

Edition 1.2.2, 21 May 1999
� Version 1.2.2 has been described.

Edition 1.2.1, 15 April 1999
� The new features of Version 1.1.1 sublevel 2-5 and Version 1.2.1 sublevel 0-1 have

been described.

� The author's details have been updated.

� The list of known problems has been amended.

� An error in the requirements for the synchronous command IUCV interface has been
corrected.

� Spelling has been updated to conform better to that used on the British isles.

� A note has been added regarding NORDYMSG and fullscreen.

Edition 1.1.1, 4 April 1997
� The new features of Version 1.1.1 have been described.

� Clarification of PIPSYSF activation.

� Recommendation to use a separate filemode for logging to eliminate any risk of data
loss.

� The use of case has been clarified for the synchronous IUCV interface.

� REXX level requirement has been documented.

 Summary of changes 1

� VM/ESA Release 2 requirement has been documented.

� It has been documented where to find the PIPESERV package and CMS Pipelines.

Edition 1.1, 22 November 1996
� FORMAT keyword of the timer command now documented, as is field names for the

timer output record.

� More advice on using serial connections to PIPESERV.

Edition 1.0, 14 November 1996
� Due to a bug in the gate stage of CMS Pipelines, a higher level of Pipelines is now

required. Using earlier levels of Pipelines may cause premature termination of
PIPESERV on EOF on input streams.

� The new features of Version 1.1.0Y and 1.1.0Z have been described.

� The documentation has been tidied up, clarified, and extended a few places.

Edition 1.0 draft, 28 September 1994
� The new features of Version 1.1.0 have been described.

� The discussion about immediate commands has been updated to describe the use of
immediate commands in CONSOLE mode.

� The syntax typography for input and output streams has been changed from SMALL

UPPERCASE TYPE to lowercase italics, because pipeline stream identifiers are case sen-
sitive.

Edition 0.19, 15 July 1994
� The new features of Version 0.2.2 have been described.

Edition 0.18, 27 May 1994
� The new features of Version 0.2.1 have been described.

� SUSPEND command added to the real-life account records example.

Edition 0.17, 20 May 1994
� The new features of Version 0.1.11 have been described.

� New examples have been included to illustrate how to schedule commands for later
execution and how to manage account record collection in separate files for each day.

� The program logic part has been extended.

 Known problems

Timer weekday ignored
Regardless if a weekday or a specific date is specified on a timer or reminder command,
the timer will expire on any day. For timer requests being written to the tmr output
stream, the circumvention is to connect a REXX stage to the stream, which checks the
weekday or date. Refer to “tmr output stream” on page 47, DATEWDAY or DATEDATE field.

2 PIPESERV

 Features overview

 Basic features
Host command shell Host commands entered on the console are executed.

Initial stack Records in the CMS program stack will be read at
PIPESERV initialisation and executed as host or
PIPESERV commands.

PQUERY The pquery command lets you review the current set-
tings.

Interactive REXX You can interactively execute REXX statements in
either a protected environment or in the PIPESERV
environment.

Subcommand environment You can address a different subcommand environment
than the default.

Dynamic pipeline addition During PIPESERV execution, you may dynamically
add new pipelines to run in parallel with PIPESERV.

Timer PIPESERV can be instructed to execute a command,
add a pipeline, write a record to an application pipeline
or display a reminder at specific times, either once or
repeatedly. The timer command has a variety of
options, allowing you to limit the scope of the timer to
for example certain weekdays and certain time ranges.
Timer requests can be queried and deleted.

CP *MSG IUCV connection MSG, SMSG, IMSG, EMSG, CPCONIO, and SCIF is
automatically set to IUCV, trapped and logged by
PIPESERV.

Reader file information PIPESERV will query incoming reader files, log and
display information on the console.

Logging Optional logging and automatic housekeeping of log
files. Pipelines using PIPESERV may create records
for inclusion in the log file.

 Optional features
Restart PIPESERV can be stopped and restarted with the

restart command. This is useful if you have updated
some of the active pipeline programs and want to
execute the new versions.

Logical lineend character As a supplement to the CP LINEND character, you
may define a logical lineend character for PIPESERV
in PIPESERV CONFIG.

 Features overview 3

Command authorisation You may authorise other userids on any RSCS node to
execute host commands and PIPESERV commands.
The authorisation is based on a control file that may be
dynamically updated and reloaded.

Optional console output Console output may be suppressed if desired. This may
be useful if PIPESERV is running in a disconnected
server.

Optional ready message The ready message displayed after each command may
be suppressed.

Initial command file The user may create a PIPESERV INITCMD file con-
taining commands for execution at PIPESERV
initialisation. This is particularly useful for specification
of permanent timer requests.

Reload command The rlddata command reloads the optional
authorisation and initial command files.

Optional programming features
Reader file information records Information records for incoming reader files are avail-

able to your own pipeline stages on the rdr output
stream if connected.

Initial reader file information PIPESERV will optionally query existing reader files
and write information about them to the irdr output
stream, if connected, when PIPESERV is started.

Warning records WNG records are trapped and logged via the CP
*MSG IUCV interface if you connect to the wng
output stream.

Log interface In addition to the log records generated by PIPESERV,
you may append your own records to the log.

Command input stream If your program connects to the cmd input stream, any
command presented will be executed as if it was
entered on the console.

Alternate command input stream If your program connects to the cmdt input stream,
any command presented will be executed as if it was
entered on the console, but the command output will be
directed to the cmdt output stream if connected. if the
cmdt output stream is not connected, then the command
output is written on the console.

Console output stream Commands entered on the console are available to your
program if you connect to the cons output stream.

Command output stream Commands entered via the cmd input stream are avail-
able to your program if you connect to the cmd output
stream.

Alternate command output stream Commands entered via the cmdt input stream,
together with their console output, are available to your
program if you connect to the cmdt output stream.

4 PIPESERV

Return code output stream Return codes from all executed commands are available
on the rc output stream, if connected.

PIPESERV INITCMD output stream Commands read from the PIPESERV INITCMD
file are available to your program if you connect to the
icmd output stream.

Stack output stream The CMS stack contents are available to your program
if you connect to the stac output stream.

CP *MSG output streams Any CP *MSG IUCV record, except control records
for internal PIPESERV use, is available to your
program if you connect to the relevant output stream.

Synchronous IUCV interface Another userid on the same host, including the userid
running PIPESERV, may receive the command output
from PIPESERV in a pipeline. This allows applications
to verify the execution of commands in PIPESERV,
and it allows REXX stages executing in the userid
running PIPESERV to execute commands in
PIPESERV without connecting to any PIPESERV
streams.

Command pre-processing exits A number of exits is available to allow modification
and filtering of incoming commands. Commands tar-
geted for an application can be routed to the applica-
tion instead of the PIPESERV command processor.

 Overview

 ┌────────PIPESERV────────┐

Pipeline stages ────�┤Input Output├────� Pipeline stages

 ────�┤streams streams├────�

│ │....

 │ │

CP)MSG IUCV ────�┤ ├────� Messages

 service │ │

 │ ├────� Reminders

CMS stack ────�┤ │

 │ │

Console ────�┤ ┌──────────────────┐ ├────� Console

│ │Command execution │ │

Timer interrupts ────�┤ │Pipeline execution│ ├0───� Synchronous IUCV

│ └──────────────────┘ │ command interface

 │ │

Pipeline stages ────�┤ Programming exit input ├────� Pipeline stages

────�┤ and output streams ├────�

│ │....

 └─┬──────┬──────┬──────┬─┘

5 │ 5 5

│ │ │ │

6 6 6 │

 LASTING Log Control Configuration

 GLOBALV file files files

Figure 1. Overview

 Features overview 5

Planning and Installation

 Requirements
� VM/ESA (Version 1) Release 2 or later.

� REXX level 3.48 or higher.

� CMS Pipelines level 110B0004 or later. Use command pipe query level to check
your level. This level is required for the IUCV support.

� A R/W minidisk or SFS directory accessed as A must be available for PIPESERV's
control files and for the LASTING GLOBALV file. The control files are used to store
timer requests. The space requirement depends on the number of pending timer
requests and the length of the string part. For each request, a control record of 141
bytes will be stored in the control file, PIPESERV savetmr, including string parts up
to 40 bytes per request. Remaining text parts will be stored in a separate, variable
length file, PIPESERV saveext. The fileids are in lowercase to indicate that these
files should not be updated manually. PIPESERV will read and write few variables
in the GLOBALV group PIPESERV. If too little space is available, PIPESERV may
terminate during initialisation. If space runs out during operation, PIPESERV con-
tinues, but timer and reminder commands may be rejected.

� Unless LOGWRITE OFF is specified in the PIPESERV configuration file, space must be
available for the log files, yyyymmdd PIPSRVLG, on the filemode specified. If space
runs out during operation, PIPESERV continues, and the log records are written to
the virtual console, which will be spooled, instead of to the log file. At midnight,
PIPESERV will first try to write log records to the log file. If that fails, it will again
use the console. The spooled console records may later be manually appended to the
log files if so desired, as they are in the same format.

Note: It is recommended to use a separate minidisk for the log file, or to use an
SFS directory, because having a constantly open file being updated in place on a
minidisk imposes a slight risk of corrupting the whole minidisk. This will only
happen under rare circumstances, and it is described in the CMS User's Guide.

 Installation
Load the files from PIPESERV PACKAGE onto a minidisk.

PIPESERV can be downloaded from http://www.vm.ibm.com/download/ .

If you plan to use the PIPSRVRB utility, download PROMPT from
http://www.vm.ibm.com/download/ and install it.

Install the level of CMS Pipelines required. It can be downloaded from
http://vm.marist.edu/˜pipeline/ .

6 PIPESERV

 Tailoring

 PIPESERV CONFIG
Optionally edit the PIPESERV SAMPCONF file to suit your needs and file it as another
fileid. If it is not filed as PIPESERV CONFIG, you must specify its name upon invoca-
tion of PIPESERV. Refer to “PIPESERV syntax” on page 13.

The file may be fixed or variable and may have any record length.

The records in the file must conform to the following standard:

Token 1: If the first non-blank character in a record is a "*", the record is treated as a
comment. Otherwise, the first token (word) is taken as a keyword.

Token 2-*: For non-comment records, token 2-* contains parameters for the keyword.

Keyword and comment records may appear in any order and may be intermixed if
desired.

Keywords Parameters

KEEPLOG Specifies how many days the log files are to be kept. Log files are named
yyyymmdd PIPSRVLG A6. PIPESERV automatically erases the log files when
expired. If there is more than one KEEPLOG record, the first record takes
precedence.

MSGCMD Specifies the CP message command to be used when sending messages to
other userids (MSG or MSGNOH). The default is MSGNOH. Note that the
MSGNOH command requires CP privilege class B if your system has not
redefined it using the User Class Restricture facility of CP. If there is more
than one MSGCMD record, the first record takes precedence.

MSGNOH Specifies one or more blank-separated userids for which no message header is
to be displayed on your console. As MSG and MSGNOH are presented to
you as the same IUCV class (1), PIPESERV cannot separate MSGNOH from
MSG. As many MSGNOH records as desired may be specified.

RESTART Specifies a CMS command to be executed to restart PIPESERV when it has
terminated following a restart command. If there is more than one RESTART

record, the first record takes precedence.

LINEND Specifies a logical lineend character to allow multiple logical commands to
be entered to PIPESERV as one command string. Note that you must be
authorised for each logical command, as the command string is split before
the authorisation check.

LOGWRITE Specifies if one log record at a time is written to the log file, if the log file is
only updated when an in-storage I/O buffer is full or if no log file is to be
written. Also specifies if the log file is to be closed for every record written.

Specify SAFE to write one record at a time and close the log file for every
record.

Specify SLOW to write one record at a time without closing the log file.

Specify FAST to write a complete buffer at a time without closing the log file.

Specify OFF if no log file is to be written.

 Planning and Installation 7

Note: You cannot use the logx pre-processing exit if you specify LOGWRITE
OFF. SAFE is recommended for normal use, as it allows you to browse the log
file and see the latest entries during PIPESERV operation. FAST is recom-
mended for high-activity userids, because writing one record at a time may
severely degrade performance.

LOGFM Specifies the filemode where the log file is to be written. Default is A. If
space runs out during operation, PIPESERV continues, and the log records
are written to the virtual console, which will be spooled, instead of to the log
file. At midnight, PIPESERV will first try to write log records to the log file.
If that fails, it will again use the console. The spooled console records may
later be manually appended to the log files if so desired, as they are in the
same format.

Note: It is recommended to use a separate minidisk for the log file, or to
use an SFS directory, because having a constantly open file being updated in
place on a minidisk imposes a slight risk of corrupting the whole minidisk.
This will only happen under rare circumstances, and it is described in the
CMS User's Guide.

MSGCMD MSGNOH

MSGNOH TODEVENT RSCS DIRMAINT PVM RACFVM RACMAINT

KEEPLOG 7

RESTART PIPE PIPESERV

LINEND ;

LOGWRITE SAFE

LOGFM A

Figure 2. Sample PIPESERV CONFIG file

 PIPESERV AUTHUSER
Optionally edit the PIPESERV SAMPAUTH file to suit your needs and file it as PIPESERV

AUTHUSER. This file controls which userids may execute commands in the userid running
PIPESERV. If the file does not exist on any accessed filemode, no other userids will be
authorised. You may edit the file while PIPESERV is running. When you issue the
rlddata command, the file will be reloaded into PIPESERV.

The file may be fixed or variable and may have any record length.

Comment records are identified by a) (asterisk) in column 1. They will not be processed.

Other records contain authorisations.

Format for authorisation records:

Token 1: Userid(s) to be authorised.

Token 2: RSCS nodeid(s) on which the userid(s) are authorised.

Token 3-*: The host commands or PIPESERV commands that may be executed. The
first word may optionally be CMD, but this is redundant.

There is no need to authorise the userid running PIPESERV, as commands originating
from this userid will bypass the authorisation check automatically.

8 PIPESERV

All records are tokenised in accordance with the CMS standard, that is, all words are
uppercased and truncated to 8 bytes by PIPESERV, and left and right parentheses are
regarded as separate tokens.

Any token may be specified in any of the following ways:

� As a complete word that must match.

� As) (asterisk), meaning that any word matches.

� As a partial word, ending with an) (asterisk), meaning that the specified characters
must match. For example: Q) will match QUERY. LIST) will match LIST and
LISTFILE, but not LOCATE.

Even though the examples are aligned in columns, you may place the control words in
any columns you like.

Note: If you specify userid as), you cannot place it in column 1, as this would be
regarded as a comment record. So to avoid mistakes, you may prefer to leave column 1
blank except for comments.

) Userid Nodeid Command prefix

) -------- -------- --

)Allow any user on any node to use the REM command:

)) REM

)Allow GOOFY on any node to use any command:

 GOOFY))

)Allow anybody on any node starting with VMNODE to use the TMR command:

) VMNODE) TMR

)Allow MICKEY on VMNODE3 to execute any command starting with Q:

 MICKEY VMNODE3 Q)

)Allow MICKEY on VMNODE3 to execute QUERY DISK:

 MICKEY VMNODE3 QUERY DISK

Figure 3. Sample PIPESERV AUTHUSER file

 PIPESERV INITCMD
Optionally create a PIPESERV INITCMD file. Records in this file will be executed as host
or PIPESERV commands before the CMS stack is emptied. This is particularly useful for
specifying permanent timer requests. You may edit or create the file while PIPESERV is
running. When you issue the rlddata command, the file will be reloaded into PIPESERV,
and any pending permanent timer requests will be deleted. Note that only timer and
reminder commands from this file are executed as a result of an rlddata command.

The file may be fixed or variable, and the record length is unlimited. Commands may
begin in any column.

 Planning and Installation 9

 Getting started

To use PIPESERV in its simplest form, all you have to do is enter pipe pipeserv from
the CMS command line. This will make all basic features (see “Basic features” on
page 3) available to you. You may want to try some simple commands:

10 PIPESERV

 pipe pipeserv

�Loading authorization file PIPESERV AUTHUSER A1 dated 2JJJ-J5-1J 16:J3:2J

�

� PIPESERV Version 1.2.4 running.

� (c) Copyright International Business Machines Corporation 1996, 2JJJ.

� All Rights Reserved.

�

�Ready(); 2JJJ-J5-2J 15:35:23 (SKOVGAF at GFORD1)

 listfile) blah

�DMSLSTJJ2E File not found

�Ready(28); 2JJJ-J5-2J 15:35:4J (SKOVGAF at GFORD1)

 listfile) pipsrvlg)

�1997J4J2 PIPSRVLG Z6

�1997J312 PIPSRVLG Z6

�1997J313 PIPSRVLG Z6

�1997J314 PIPSRVLG Z6

�1997J317 PIPSRVLG Z6

�1997J318 PIPSRVLG Z6

�1997J319 PIPSRVLG Z6

�1997J32J PIPSRVLG Z6

�1997J321 PIPSRVLG Z6

�1997J322 PIPSRVLG Z6

�1997J324 PIPSRVLG Z6

�1997J325 PIPSRVLG Z6

�1997J326 PIPSRVLG Z6

�1997J327 PIPSRVLG Z6

�1997J4J1 PIPSRVLG Z6

�Ready(J); 2JJJ-J5-2J 15:35:5J (SKOVGAF at GFORD1)

 rem +::6J string I want a reminder after 6J seconds

�Timer request number 1 stored

�Ready(J); 2JJJ-J5-2J 15:36:12 (SKOVGAF at GFORD1)

 rexx say 2))8

�256

�Ready(J); 2JJJ-J5-2J 15:36:21 (SKOVGAF at GFORD1)

 restart

�Restart requested by SKOVGAF at GFORD1

�Ready; T=1.J1/1.11 15:36:26

�Loading authorization file PIPESERV AUTHUSER A1 dated 2/18/97 16:J3:2J

�PIPESERV restarted after request by SKOVGAF at GFORD1

�

� PIPESERV Version 1.2.4 running.

� (c) Copyright International Business Machines Corporation 1996, 1997.

� All Rights Reserved.

�

�Ready(); 2JJJ-J5-2J 15:36:28 (SKOVGAF at GFORD1)

�Loading authorization file PIPESERV AUTHUSER A1 dated 2/18/97 16:J3:2J

 reminder query

�Requestno. Userid Nodeid Time Date Rep A T String (A=Actn T=Type)

�---------- -------- -------- --- -------- ----- --- - - ----------------------

� 1 SKOVGAF GFORD1 Rel JJ:J1:JJ Any Onc R T I want a reminder afte

�Ready(J); 2JJJ-J5-2J 15:36:42 (SKOVGAF at GFORD1)

 pquery level

�PIPESERV Version 1.2.4 sublevel J, released on 1997J31J 1J:2J

�Ready(J); 2JJJ-J5-2J 15:36:55 (SKOVGAF at GFORD1)

 rlddata

�Loading authorization file PIPESERV AUTHUSER A1 dated 2/18/97 16:J3:2J

�Reloading TIMER & REMINDER commands from PIPESERV INITCMD A1 dated 11/22/96 11:J2:58

�Ready(J); 2JJJ-J5-2J 15:37:J7 (SKOVGAF at GFORD1)

�Timer request number 1:

�You have requested the following reminder text to be sent to your userid:

�I want a reminder after 6J seconds

 stop

�Ready; T=1.47/1.6J 15:37:3J

Figure 4. Sample PIPESERV session

The Ready messages are generated by PIPESERV. The return codes from commands
entered on the console are always shown in parantheses after Ready. When PIPESERV is
started, no return code is displayed, as no commands have been entered on the console.

 Getting started 11

Following the return code is the current date and time, the userid running PIPESERV,
and the RSCS nodeid.

In the logfile, 1997J4J2 PIPSRVLG Z6, we can see what happened:

 15:35:23 Pipeserv SKOVGAF GFORD1 PIPESERV Version 1.2.4 sublevel J running, released on 1997J31J 1J:2J

 15:35:4J Console SKOVGAF GFORD1 listfile) blah

 15:35:4J Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: listfile) blah

 15:35:5J Console SKOVGAF GFORD1 listfile) pipsrvlg)

 15:35:5J Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: listfile) pipsrvlg)

 15:36:11 Console SKOVGAF GFORD1 rem +::6J string I want a reminder after 6J seconds

 15:36:11 Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: rem +::6J string I want a reminder after 6J seconds

 15:36:12 Pipeserv SKOVGAF GFORD1 Timer request number 1 stored

 15:36:2J Console SKOVGAF GFORD1 rexx say 2))8

 15:36:2J Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: rexx say 2))8

 15:36:26 Console SKOVGAF GFORD1 restart

 15:36:26 Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: restart

 15:36:27 Pipeserv SKOVGAF GFORD1 PIPESERV Version 1.2.4 sublevel J running, released on 1997J31J 1J:2J

 15:36:27 Pipeserv SKOVGAF GFORD1 PIPESERV restarted after request by SKOVGAF at GFORD1

 15:36:27 Ireader SKOVGAF GFORD1 2444 SKOVGAF GFORD1 18 TJJ CON SKOVGAF 1997J4J2 12:34:36 74 n J

 15:36:42 Console SKOVGAF GFORD1 reminder query

 15:36:42 Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: reminder query

 15:36:55 Console SKOVGAF GFORD1 pquery level

 15:36:55 Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: pquery level

 15:37:J6 Console SKOVGAF GFORD1 rlddata

 15:37:J6 Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: rlddata

 15:37:12 TimerExp SKOVGAF GFORD1 1J1 7291151997J4J256171 SKOVGAF GFORD1 R--JJJ6J O)J864JJJJJJJ86

 15:37:12 TimerEnd SKOVGAF GFORD1 1

 15:37:12 Pipeserv SKOVGAF GFORD1 Timer request number 3 has been deleted.

 15:37:3J Console SKOVGAF GFORD1 stop

 15:37:3J Pipeserv SKOVGAF GFORD1 Executing command for SKOVGAF at GFORD1: stop

Figure 5. Log file from a sample PIPESERV session

12 PIPESERV

 PIPESERV syntax

Use the following syntax when calling the PIPESERV stage from a pipeline.

��──PIPESERV──┤ configfid ├─ ──┬ ┬───────────────────────────── ─────�0
 └ ┘ ─(─ ──┬ ┬─────────────── ──┬ ┬───

└ ┘─┤ options ├───(1) └ ┘─)─

options:
 ┌ ┐─DISPLAY─── ┌ ┐─INITRDR─── ┌ ┐─CONSOLE─ ┌ ┐─RDYMSG───

├─ ──┼ ┼─────────── ──┼ ┼─────────── ──┼ ┼───────── ──┼ ┼────────── ────────┤
 └ ┘─NODISPLAY─ └ ┘─NOINITRDR─ └ ┘─IMMCMD── └ ┘─NORDYMSG─

 configfid:
├─ ──┬ ┬── ───────────────┤

 │ │┌ ┐─PIPESERV─ ┌ ┐─CONFIG)───────────────────
 └ ┘ ──┴ ┴─filename─ ──┼ ┼────────────────────────────

 │ │┌ ┐─CONFIG─── ┌ ┐─)────────
 └ ┘ ──┴ ┴─filetype─ ──┼ ┼──────────
 └ ┘─filemode─
Note:
1 Options may be specified in any order.

DISPLAY Display messages, warnings, CP informational messages, SCIF
from the CP *MSG service (IUCV classes 1, 2, 7 and 8 respec-
tively) and reader file information on the console. Note that only
if you have connected to the WNG output stream, warning display
is controlled by PIPESERV. Otherwise, warnings will always be
displayed, clearing the display. This is the default.

NODISPLAY Suppress display of messages, warnings, CP informational mes-
sages, SCIF and reader file information. See also the DISPLAY

option. NODISPLAY does not suppress logging.

INITRDR At PIPESERV invocation, query existing reader files and write
information about them on the irdr output stream, if connected.
The information will be written to the log file as well. This is
the default.

NOINITRDR Suppress query of existing reader files at PIPESERV invocation,
regardless if the irdr output stream is connected. No information
about existing reader files is written to the log file.

CONSOLE All console input is controlled by PIPESERV. Immediate CMS
commands must be prefixed with the CP terminal linend char-
acter to be recognised. See “PIPESERV commands” on page 15
for a discussion of IMMCMD versus CONSOLE. CONSOLE is the
default.

IMMCMD Console input is managed by the use of immediate commands.
See “PIPESERV commands” on page 15 for a discussion of
IMMCMD versus CONSOLE.

RDYMSG Tell PIPESERV to display a ready message after completion of
each command. This is the default.

 PIPESERV syntax 13

NORDYMSG Tell PIPESERV not to display a ready message after completion
of each command.

Note: If you run PIPESERV in NORDYMSG mode and enter
fullscreen mode by executing for example a FILELIST command,
then you need to press the ATTN key or send a msg to the userid
in order to revert to line mode.

filename Specify CMS filename of the PIPESERV configuration file.
Default is "PIPESERV". If you do not specify a configuration
file, and the default file is not found, PIPESERV will assign
default values for the variables in the configuration file.

filetype Specify CMS filetype of the PIPESERV configuration file.
Default is "CONFIG". If you do not specify a configuration file,
and the default file is not found, PIPESERV will assign default
values for the variables in the configuration file.

filemode Specify CMS filemode of the PIPESERV configuration file. The
default is to search all filemodes. If you do not specify a config-
uration file, and the default file is not found, PIPESERV will
assign default values for the variables in the configuration file.

14 PIPESERV

 PIPESERV commands

Once PIPESERV is running, you may use the PIPESERV commands described in this
chapter interactively.

PIPESERV commands can be entered in six different ways:

1. In the PIPESERV INITCMD file. These commands are the first to be executed at
PIPESERV initialisation. Refer to “PIPESERV INITCMD” on page 9 for a
description of this file.

2. In the CMS stack before PIPESERV invocation. These commands are executed
immediately after the commands in the PIPESERV INITCMD file.

3. On the console of the userid running PIPESERV.

4. Via the cmd input stream. See “Command input stream” on page 30 and “cmd input
stream” on page 45.

5. Via the cmdt input stream. See “Alternate command input stream” on page 30 and
“cmdt input stream” on page 45.

6. Via a MSG or SMSG from a userid on the same host, or via an RSCS message from a
userid on a remote RSCS node.

7. Via the synchronous IUCV command interface from a userid on the same host.

To execute the command query disk in PIPESERV and receive the command
output in the rexx stem reply.:

'PIPE literal q disk|iucvclient serverid name cmd|stem reply.'

Where serverid is the userid of the server running PIPESERV and cmd is the
service requested from the server Only the service cmd is supported by PIPESERV.
Do not confuse the service with the cmd PIPESERV command. Refer to “Synchro-
nous IUCV command interface” on page 33 for a full description.

If executed from a rexx stage executing in the same userid as PIPESERV, the PIPE
command must be replaced with callpipe or addpipe. If not, the pipeline will stall.
No host commands may be active when this interface is used to communicate with
PIPESERV in the same userid, as they would suspend PIPESERV execution, thereby
making it stall.

Execution of commands from other userids must be authorised in the PIPESERV

AUTHUSER file. Logical commands separated by the PIPESERV logical lineend character
are verified individually. Commands to be executed as a result of an expiring timer
request are verified before execution. See “PIPESERV AUTHUSER” on page 8.
PIPESERV always accepts commands from the userid where it is running.

Managing console input
PIPESERV can handle console input in two different ways, depending on the option you
specify on the PIPESERV command.

 PIPESERV commands 15

 CONSOLE
If you do not specify the IMMCMD option on the PIPESERV command, PIPESERV defaults
to CONSOLE.

This has the advantage that any command entered on the console is handled directly by
PIPESERV. If the command is not recognised as a PIPESERV command, it is executed
as a host command, where the normal CMS command resolution takes place.

The disadvantage is that immediate CMS commands have to be prefixed with the CP
terminal linend character to be recognised by CMS.

 IMMCMD
If you specify the IMMCMD option on the PIPESERV command, PIPESERV is only
reacting immediately on console input that is prefixed with the word cmd. Other console
input, not recognised by CMS as immediate CMS commands, is placed in the terminal
input buffer.

The advantage is that you can use immediate CMS commands without prefixing them
with the CP terminal linend character.

The disadvantage is that host commands entered on the console must be prefixed with
cmd to be executed immediately. If you forget to prefix a command with cmd, it will be
placed in the terminal input buffer instead of being executed. However, whenever
PIPESERV is activated, for example by a PIPESERV command, the terminal input buffer
will be emptied and the records executed as commands. So if you forgot to prefix your
host commands with cmd, the trick is to enter a cmd command without arguments,
thereby forcing PIPESERV to empty the terminal input buffer.

 Command syntax

 host command

��──host command──�0

Host commands are executed using the standard CMS command resolution. If the
IMMCMD option is specified on the PIPESERV command, host commands entered on the
console must be prefixed with cmd for immediate execution.

The host command may identify the userid that requested the execution by inspecting the
variables ORIGUSER and ORIGNODE in GLOBALV group PIPESERV. These variables
contain the userid and RSCS nodeid respectively, and for the duration of the command
execution.

Note: You may use immediate CMS commands as described above. For application
debugging purposes, HI (Halt Interpretation) may be useful, because PIPESERV will con-
tinue execution, while other REXX programs will be halted. HX (Halt eXecution) will
halt PIPESERV as well as other programs. Refer to the CMS documentation for more
information about immediate commands.

16 PIPESERV

 CMD

��──CMD─ ──┬ ┬────────────────── ────────────────────────────────────�0
 ├ ┤─host command─────
 └ ┘─PIPESERV command─

In some cases, commands must be prefixed with cmd for PIPESERV to identify the input
as a command.

Table 1 summarizes the use of the cmd prefix. Brackets ("[]") around cmd indicates that
it is optional. Any host command or PIPESERV command may be prefixed with cmd at
any time, regardless how it is entered to PIPESERV.

♠: However, see “IMMCMD” on page 16.

Table 1. CMD use, overview

Input method CONSOLE option IMMCMD option

Console
[CMD] host-command

[CMD] PIPESERV-command

CMD host-command ♠

CMD PIPESERV-command ♠

Stack
[CMD] host-command

[CMD] PIPESERV-command

PIPESERV INITCMD
[CMD] host-command

[CMD] PIPESERV-command

cmd input stream
[CMD] host-command

[CMD] PIPESERV-command

cmdt input stream
[CMD] host-command

[CMD] PIPESERV-command

MSG
CMD host-command

CMD PIPESERV-command

SMSG
[CMD] host-command

[CMD] PIPESERV-command

Sync. IUCV interface
[CMD] host-command

[CMD] PIPESERV-command

ADDRESS (subcommand environment)

��──ADDRess──subcommand environment──subcommand command───────────�0

The address command lets you execute a command in a different subcommand environ-
ment than the default of CMS.

"subcommand environment" must be available at the time of execution.

"subcommand command" must be a valid command in the specified environment.

 PIPESERV commands 17

For example, to have an active XEDIT environment while running PIPESERV, go into
XEDIT and start PIPESERV from there. Underneath the PIPESERV/CMS console, you
will have an XEDIT environment. From the command line, you can issue commands to
XEDIT, like for example

address xedit refresh

address xedit status

Refer to “Using PIPESERV with an active, parallel XEDIT environment” on page 41 for
a guide to using XEDIT together with PIPESERV.

 DEBUG

��──DEBUG──rexx-expression──�0

Use the debug command to execute REXX expressions interactively within the
PIPESERV environment.

You may use the REXX command separator ; to execute more than one REXX
expression in the same rexx command.

You have access to PIPESERV's internal rexx variables, as well as its input and output
streams. Modifying any of these may cause unpredictable results.

The environment is pipeline.

Refer to the description of the command “REXX” on page 20 for examples.

Note: If executing a pipeline command like CALLPIPE or ADDPIPE from another userid,
via the cmdt input stream, or via the synchronous IUCV interface, console output destined
for the server may be mixed up with console output from the pipeline command. This is
due to the design of CMS Pipelines and PIPESERV. For ADDPIPE commands, it is unpre-
dictable if any console output is written to the server console or to the command origin,
because of its asynchronous nature.

Note: Do not alter the environment permanently, for example by using the ADDRESS

command without a host command.

 PQUERY

 ┌ ┐─ALl─────
��──PQuery─ ──┼ ┼───────── ──�0
 ├ ┤─Version─
 ├ ┤─Level───
 ├ ┤─Config──
 ├ ┤─Options─
 └ ┘─AUths───

The pquery command displays active information about PIPESERV.

If the VERSION keyword is specified, only the PIPESERV version and maintenance level
(sublevel) are displayed. LEVEL is a synonym for VERSION.

18 PIPESERV

pquery version

�PIPESERV Version 1.2.4 sublevel J, released on 1997J31J 1J:2J

Figure 6. Sample output from a pquery version command.

If the CONFIG keyword is specified, the name of the current PIPESERV configuration file
- if any - is displayed, followed by the current configuration values.

 pquery config

�PIPESERV configuration values from file PIPESERV CONFIG):

� MSGCMD = MSG

 � MSGNOH userid(s):

� TODEVENT

� RSCS

� DIRMAINT

� PVM

� RACFVM

� RACMAINT

� HMFSERVE

� KEEPLOG = 7

� RESTART = PIPE PIPESERV

� LINEND = ;

� LOGWRITE = SAFE

� LOGFM = A

Figure 7. Sample output from a pquery config command.

Refer to the sample configuration file PIPESERV SAMPCONF or “PIPESERV CONFIG”
on page 7 for a description of the individual parameters.

If the OPTIONS keyword is specified, only the options specified on the PIPESERV
command are displayed.

 pquery options

�Active PIPESERV options:

 � DISPLAY

 � INITRDR

 � RDYMSG

 � CONSOLE

Figure 8. Sample output from a pquery options command.

If the AUTHS keyword is specified, only the current PIPESERV authorisations are dis-
played.

 pquery auths

�Active PIPESERV authorisations:

�)) REM

 � MAINT GFORD1)

 � SYSCNTRL GFORD1)

Figure 9. Sample output from a pquery auths command.

If the ALL keyword or no keywords are specified, all of the above information is dis-
played.

 PIPESERV commands 19

 REMINDER
The reminder command is a synonym for the timer command, except that the REMINDER

option is enforced. This permits general users to take advantage of the timing facilities
without allowing them to schedule command execution.

 RESTART

��──RESTART───�0

The restart command terminates the PIPESERV stage and all its connections. Before ter-
mination, it places the command specified in the RESTART record in the PIPESERV con-
figuration file in the CMS stack. See “Tailoring” on page 7. Timer requests will survive
from one invocation of PIPESERV to the next, unless the VOLATILE option of the timer
or reminder command was specified by the user or was implied by entering the com-
mands via the cmd input stream or the CMS stack without specifying the TEMPORARY or
PERMANENT option.

 REXX

��──REXX──rexx-expression───�0

Use the rexx command to execute REXX expressions interactively. For example, you can
use PIPESERV as a calculator with memory.

 rexx a = 2

 rexx b = 4

 rexx say a)b

�8

Sometimes it is useful to try how REXX commands work in real life instead of searching
the manuals. Perhaps you cannot remember the exact output from the DATE function.
You would enter

rexx say date()

�5 Nov 1996

You may use the REXX command separator ; to execute more than one REXX
expression in the same rexx command. To execute a loop, you could enter

rexx do i = 1 to 3;say i;end

�1

�2

�3

PIPESERV will normally be able to recover from REXX syntax errors.

REXX variables are kept in a protected environment, where you cannot access
PIPESERV's internal REXX variables. Your variables are not stored when PIPESERV is
stopped or restarted.

The environment is pipeline. That is, you can issue commands like

20 PIPESERV

rexx 'callpipe literal a | console'

rexx 'addpipe literal q disk | iucvclient PIPEUSER name cmd | console'

rexx address command 'Q DISK'

With the ADDPIPE command, you may start new pipelines to run in parallel with the
PIPESERV stage.

Note: If executing a pipeline command like CALLPIPE or ADDPIPE from another userid,
via the cmdt input stream, or via the synchronous IUCV interface, console output destined
for the server may be mixed up with console output from the pipeline command. This is
due to the design of CMS Pipelines and PIPESERV. For ADDPIPE commands, it is unpre-
dictable if any console output is written to the server console or to the command origin,
because of its asynchronous nature.

Note: Do not alter the environment permanently, for example by using the ADDRESS

command without a host command.

 RLDDATA

��──RLDData───�0

The rlddata command reloads the PIPESERV AUTHUSER and the PIPESERV INITCMD files.
This allows you to update these files without interrupting the PIPESERV service. All
pending permanent timer requests, except those including an IPL, START, or RESTART

keyword, are deleted. Only timer and reminder commands from the PIPESERV INITCMD

file are executed.

 STOP

��──STOP──�0

The stop command terminates the PIPESERV stage and all its connections. Timer
requests will survive from one invocation of PIPESERV to the next, unless the VOLATILE

option of the timer or reminder command was specified by the user or was implied by
entering the commands via the cmd input stream or the CMS stack without specifying the
TEMPORARY or PERMANENT option.

In case you cannot stop PIPESERV normally with a stop command from the console or
from an authorised userid, PIPESERV has a built-in "emergency brake": Press the CP
break key (normally PA1) and issue the command

smsg) stop

without any trailing blanks. This will bypass the normal command processing routine.
However, as this is not an orderly way to stop PIPESERV, it may cause pipelines to stall,
and it may generate some pages of error messages. The CP settings, altered by
PIPESERV at initialisation, may not be reset.

 PIPESERV commands 21

 TIMER

��─ ──┬ ┬─TIMer──── ──┬ ┬─┤ set ├─────────────────────── ──────────────�0
 ├ ┤─TMR────── │ │┌ ┐──────────────────────
 └ ┘─REMinder─ ├ ┤ ─Query─ ───

6
┴┬ ┬──────────────────

 │ │├ ┤─Reqno──reqno─────
 │ │├ ┤ ─Userid───(1) ─userid─
 │ │├ ┤ ─Nodeid───(1) ─nodeid─
 │ ││ │┌ ┐─Brief─
 │ │└ ┘──┼ ┼─────── ───────
 │ │└ ┘─All───
 ├ ┤─Delete──reqno─────────────────
 │ │┌ ┐─────────────
 └ ┘ ─Format─ ───

6
┴──┬ ┬─────── ────────

 └ ┘─field─
Note:
1 This keyword is only valid for the timer command.

The timer and reminder commands request one or more actions to take place at the speci-
fied time, either once or repeatedly. reminder and tmr are synonyms for timer, except
that the REMINDER option is enforced for reminder. This permits general users to take
advantage of the timing facilities without allowing them to schedule command execution.

The timer and its synonyms also let you query and delete timer requests.

Creating a timer request
The time and date specifications are positional. If specified, the STRING keyword must
be the last, as all text following this keyword will be interpreted as variable text. All
other keywords may be specified in any order. If a keyword is specified more than once,
or if more than one keyword from a choice group are specified, the last occurrance will
take priority.

Time keywords: The timespec group is mandatory and must be specified with no
intervening blanks. hours, minutes, and seconds must be whole, non-negative numbers if
specified. If one or more variables are not specified at all, they will default to 0. Any
combination of hours, minutes and seconds is valid. Minutes and seconds do not have to
follow normal conventions of being 60 or less. The total value must greater than or equal
to 0, and less than or equal to 24 hours (= 1440 minutes = 86400 seconds) in general. A
relative time specification, prefixed with a plus sign (+), must be greater than 0. The
specification for the PAST keyword must be less than or equal to 1 hour (= 60 minutes =
3600 seconds).

The following are all examples of valid time specifications:

2 02:00:00 = 2 hours.

:45 00:45:00 = 45 minutes.

::10000 00:00:10000 = 10000 seconds = 02:46:40 = 2 hours, 46 minutes and 40
seconds.

: 0.

4::3 04:00:03 = 4 hours and 3 seconds.

3:134 03:134 = 3 hours and 134 minutes = 5 hours and 14 minutes.

:1:80 00:01:80 = 1 minute and 80 seconds = 2 minutes and 20 seconds.

22 PIPESERV

set:
 ┌ ┐───────────────────────────────────────
├──┤ time ├─ ──┬ ┬────────── ───

6
┴┬ ┬─────────────────────────────────── ──────────────────────�

└ ┘─┤ date ├─ ├ ┤─REPeat────────────────────────────
 ├ ┤─NOdeid──nodeid────────────────────
 ├ ┤─RAnge──┤ timespec ├──┤ timespec ├─
 │ │┌ ┐─CMd────(1, 2) ────
 ├ ┤──┼ ┼──────────── ───────────────────
 │ │├ ┤─REMinder───(2)

 │ │└ ┘─STREam───(1) ──
 │ │┌ ┐─TEMporary────(3, 4)

 └ ┘──┼ ┼────────────── ─────────────────
 ├ ┤─Volatile───(4) ──
 └ ┘─PErmanent────(1, 3)

�─ ──┬ ┬──────────────── ───┤
 └ ┘ ─STRIng──string─

time:
├─ ──┬ ┬─┤ timespec ├─── ─────────────────────────┤

├ ┤── + ─┤ timespec ├─ ───────────────────────────────────────
 ├ ┤ ──┬ ┬─Ipl─────────────────────────── ──┬ ┬───────────────────

│ │├ ┤─REStart─────────────────────── └ ┘── + ─┤ timespec ├─
 │ │└ ┘ ─STArt─ ──┬ ┬────── ──┬ ┬──────────
 │ │└ ┘─NIpl─ └ ┘─NRestart─
 └ ┘─PAst──┤ timespec ├───────────────────────────────────────

timespec:
├─ ──┬ ┬ ─hours─ ──┬ ┬──────────────────────────────────── ────────────────────────────────────┤

 │ │└ ┘ ─:─ ──┬ ┬───────── ──┬ ┬────────────────
 │ │└ ┘─minutes─ └ ┘ ─:─ ──┬ ┬─────────
 │ │└ ┘─seconds─
 └ ┘ ─:─ ──┬ ┬───────── ──┬ ┬──────────────── ───────────

 └ ┘─minutes─ └ ┘ ─:─ ──┬ ┬─────────
 └ ┘─seconds─

date:
 ┌ ┐─Anyday────

├─ ──┼ ┼─────────── ──┤
 ├ ┤─Monday────
 ├ ┤─TUesday───
 ├ ┤─WEDnesday─
 ├ ┤─THursday──
 ├ ┤─Friday────
 ├ ┤─SAturday──
 ├ ┤─SUnday────
 ├ ┤─WDay──────
 ├ ┤─WEEkend───

├ ┤──dd/mm ────
└ ┘──dd/) ─────

Notes:
1 This keyword is only valid for the timer command.
2 For the reminder command, the REMINDER keyword is default.
3 For commands specified in the PIPESERV INITCMD file, the PERMANENT keyword is default.
4 For commands entered via the cmd input stream, or via the CMS stack, the VOLATILE keyword is default.

A timespec alone denotes an absolute time of day in the 24 hour clock in the local
timezone.

 PIPESERV commands 23

A +timespec specification denotes a relative time, or a time offset from the time of the
command entry. There must be no blanks between the plus sign and the time specifica-
tion.

The IPL keyword specifies the request to expire at the first following system ipl. If the
IPL keyword is specified in a command loaded from either the PIPESERV INITCMD file or
the CMS stack, the request will expire at PIPESERV initialisation if this happens at a
system ipl. If a time offset is specified, the offset is calculated with the time stamp
resulting from a cp q cplevel command used as base.

The RESTART keyword specifies the request to expire at the first following PIPESERV
restart, unless the next start of PIPESERV is not a restart. In that case, the request will be
cancelled.

The START keyword specifies the request to expire at the first following PIPESERV start,
including start at system ipl and restart. If the NIPL keyword is also specified, start at
system ipl will be ignored. If the NRESTART keyword is also specified, PIPESERV restart
will be ignored. If the first start of PIPESERV does not match the type of start specified
in the timer command, the request will be cancelled.

If a time specification is given after an IPL, RESTART, or START keyword, the expiry of the
request will be offset with the specified time.

The PAST keyword specifies that the request expires the specified time after the first full
hour. The time specification must be less than or equivalent to 1 hour.

If a range is specified, it is an error to specify a request to expire at an absolute time of
day if the time is outside the range specified.

It is an error to specify the VOLATILE keyword on the same command as an IPL, RESTART,
or START keyword, unless the command is entered via the PIPESERV INITCMD file or the
CMS stack. Such a command would only exist in PIPESERV's virtual storage, and it
would therefore have been cleared at the next start of PIPESERV.

It is an error to specify IPL, START, or RESTART in connection with any other date
keywords than ANYDAY

Date keywords: The date group is optional. If specified, it must follow immediately
after the time specification.

The default keyword is ANYDAY, denoting that the request may expire on any day of the
week.

The keywords MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and
SUNDAY indicates that the request can only expire on the specified day of the week.

The keyword WDAY indicates that the request can only expire on a weekday, that is,
Monday-Friday.

The keyword WEEKEND indicates that the request can only expire on a day in a weekend,
that is, Saturday-Sunday.

A date specified in the format dd/mm indicates that the request can expire only on the
specified date, where dd denotes the day of the month (1-31), and mm denotes the calendar

24 PIPESERV

month (1-12). dd and mm may be specified with one or two digits, with or without leading
zeroes.

A date specified in the format dd/) indicates that the request can expire only on the
specified day of the month, but in any month. dd denotes the day of the month (1-31).
dd may be specified with one or two digits, with or without leading zeroes.

It is an error to specify any other date keywords than ANYDAY in connection with the IPL,
START, or RESTART keywords.

Repeat keyword: Unless you specify the REPEAT keyword, the request will expire
only once, and then be deleted from PIPESERV's storage and control files.

If you specify the REPEAT keyword, the request will remain active until manually deleted
with a timer delete command. Permanent requests must be manually deleted from the
PIPESERV INITCMD file, and a rlddata command must then be issued to refresh
PIPESERV's storage and control files.

Nodeid keyword: The NODEID is designed for use in the PIPESERV INITCMD file,
which can then be shared between multiple VM systems. Thus, you can avoid having a
different file for each system.

If the nodeid specified after the NODEID keyword matches the RSCS nodeid where
PIPESERV is running, the keyword is simply ignored. Otherwise, the timer command is
ignored, and an informational message is typed on the console.

Range keyword: If a RANGE keyword is specified, the expiry of the request will be
ignored if the actual time of day in the local timezone is outside the range specified.

It is an error to specify a request to expire at an absolute time of day, which is outside
the range specified.

A specified range applies strictly to the time of the actual expiry of the request, and not
to the requested expiry. For example, a request for 3:00:00, delayed until 3:10:00 because
PIPESERV was busy or out of service, would not be executed if a range of 2:00:00 to
3:00:00 was specified.

Action keywords: The expiry of a request may result in different actions being taken.
The default action depends if the request was specified using the timer or the reminder
command.

For the reminder command, only the REMINDER keyword is valid, and it is the default.

For the timer command, the CMD keyword is the default.

The REMINDER keyword requests the character string following the STRING keyword to be
sent to the userid that issued the timer or reminder command at the expiry. It will be sent
as a CP MESSAGE or MSGNOH, depending on the configuration file setting. If
requested by the userid running PIPESERV, the string will be typed on the console.

The CMD keyword requests the character string following the STRING keyword to be exe-
cuted as a host command or a PIPESERV command at expiry. The console output from
the command will be sent to the userid that issued the timer or reminder. It will be sent
as CP MESSAGES or MSGNOH, depending on the configuration file setting. If

 PIPESERV commands 25

requested by the userid running PIPESERV, the command output will be typed on the
console. A command authorisation check will be done before executing the command. If
the userid is not authorised for the command in the PIPESERV AUTHUSER file, the
command will be rejected.

You may add pipelines permanently or temporarily to the running pipeline set by using
the rexx PIPESERV command.

For example, to run a temporary pipeline, you could specify a string of

rexx 'callpipe literal Allo monde | console'

This would type out the string Allo monde on the console. PIPESERV does not regain
control until the callpipe command has completed.

To permanently add a pipeline to run in parallel with PIPESERV and other active pipe-
lines, you could specify a string of

rexx 'addpipe starsys)account | >> account file a'

This would permanently add a pipeline to read account records from CP and write them
to a file. PIPESERV will regain control immediately, and the new pipeline will execute in
parallel with PIPESERV.

The STREAM keyword requests the character string following the STRING keyword to be
written as the final part of a record on the tmr output stream at expiry. If the tmr is not
connected, the command is rejected.

String keyword: The character string following the STRING keyword is used for either
a command, a reminder text, or a record on the tmr output stream, as described under the
CMD, REMINDER, and STREAM keywords. It is optional to specify a string. If a string is
specified, the string begins after one blank after the end of the STRING keyword. Trailing
blanks are conserved. There is no limit to the length of the string.

Request types: Three different types of requests are possible:

Volatile A volatile request is identified by the VOLATILE keyword. It exists only in
virtual storage. If PIPESERV is stopped or restarted before the requested
action takes place, the request will disappear, and the action will not take
place. VOLATILE is the default for commands entered via the cmd input
stream and the CMS stack.

Temporary A temporary request will survive from one invocation of PIPESERV to the
next, until the requested action has taken place. TEMPORARY is the default for
commands entered on the CMS command line, via MSG or SMSG, or via the
synchronous IUCV command interface.

It is an error to specify the VOLATILE keyword on the same command as an
IPL, RESTART, or START keyword, unless the command is entered via the
PIPESERV INITCMD file or the CMS stack. Such a command would only
exist in PIPESERV's virtual storage, and it would therefore have been cleared
at the next start of PIPESERV.

Permanent A permanent request is handled like a temporary request by PIPESERV,
except that whenever PIPESERV is started or restarted, or an rlddata
command is issued, all permanent requests are deleted from PIPESERV's
virtual storage and then reloaded from the PIPESERV INITCMD file. A perma-

26 PIPESERV

nent request can only be deleted by removing the corresponding command
from the PIPESERV INITCMD file and reloading this file. A timer delete

command will be rejected. PERMANENT is the default for commands entered
via the PIPESERV INITCMD file.

If you have updated the PIPESERV INITCMD file with a new timer request and
you want to wait reloading the file, you can you use the PERMANENT keyword
on a timer command to create the request in PIPESERV, until the file is
reloaded.

Note: If there is not enough space on the minidisk or directory accessed as A for
PIPESERV to update its control files, a timer or reminder command will be rejected
unless volatile.

Querying a timer request
Use the QUERY keyword to query the details about pending timer requests. timer query

displays either a brief summary, using one line per request, or the complete information,
using the necessary number of lines. The keyword to display the brief information is
BRIEF, which is the default. Specify the ALL keyword to display all details.

tmr and reminder are synonyms for timer, but with the important difference that the
reminder command may only display information about requests entered by the userid
issuing the reminder query command, while timer and tmr may display information
about any request. Thus, by authorising users to either the timer command or the
reminder command, you may separate privileged system users from non-privileged end
users.

 tmr query brief

�Requestno. Userid Nodeid Time Date Rep A T String (A=Actn T=Type)

�---------- -------- -------- --- -------- ----- --- - - ----------------------

�JJJJJJJJJ2 9SKOVGF GFORD1 Abs 15:JJ:JJ Any Rep R T 15 o'clock reminder

�JJJJJJJJJ3 9SKOVGF GFORD1 Abs 1J:JJ:JJ Wed Rep R T Today is Wednesday (1J

�JJJJJJJJ14 9SKOVGF GFORD1 Abs 15:J3:JJ J6/) Rep R T This is a 15:J3 remind

�JJJJJJJJ16 9SKOVGF GFORD1 Pas JJ:3J:JJ Wed Rep R T Past 3J on Wednesday

�JJJJJJJJ21 9SKOVGF GFORD1 Pas JJ:15:JJ M-F Rep R T Past 15 on a weekday

�JJJJJJJJ22 9SKOVGF GFORD1 Abs 1J:JJ:JJ J1/J9 Onc R T Requested for 1/9 at 1

�JJJJJJJJ23 9SKOVGF GFORD1 Rel JJ:33:JJ M-F Rep R T 33 mins interval on a

Figure 10. Sample output from a timer query brief command.

"Requestno." is a unique request identifier assigned by PIPESERV.

"Userid" and "Nodeid" refer to the requesting userid and the RSCS nodeid of the user
respectively.

The information under the "Time" heading shows the kind of time and the time itself:

Abs Absolute time

Rel Relative time

Pas Past time

Sta A start type, comprising ipl, restart and start.

The information under the "Date" heading shows the date parameter. The weekdays are
abbreviated to three characters. Wday is displayed as "M-F" (Monday-Friday), and
Weekend is displayed as "S-S" (Saturday-Sunday).

 PIPESERV commands 27

The information under the "Rep" heading shows if the request is to expire once ("Onc")
or repeatedly ("Rep").

The information under the "A" heading shows the action to be taken at expiry:

C CMD

R Reminder

S Stream

The information under the "T" heading shows the type of request:

T Temporary

V Volatile

P Permanent

Figure 11 illustrates the ALL keyword.

 tmr query reqno 23 all

�

�Request number: JJJJJJJJ23 Userid: 9SKOVGF Nodeid: GFORD1 Type : Temporary

� Entry : 1994J831 12:57:26 Time : JJ:33:JJ Action: Reminder

� Last executed: 1994J926 11:26:11 Time : Relative

� Range : JJ:JJ:JJ 24:JJ:JJ

� Date : On weekday repeat

� String: 33 mins interval on a weekday

Figure 11. Sample output from a timer query all command.

"Entry" shows when the request was entered to PIPESERV.

"Last executed" shows when the request was last executed.

"Range" shows the specified or default time range.

"String" shows the full string.

The REQNO keyword limits the query command to the specified request number. If you
are not authorised to query the specified request number, the command is rejected. If a
request does not exist for the specified number, an error message is typed.

The USERID and NODEID keywords limit the query command to search for requests
entered by the specified userid on the specified RSCS nodeid.

Deleting a timer request
Use the DELETE keyword to delete pending timer requests before they expire.

tmr and reminder are synonyms for timer, but with the important difference that the
reminder command may only delete requests entered by the userid issuing the reminder
delete command, while timer and tmr may delete any request. Thus, by authorising users
to either the timer command or the reminder command, you may separate privileged
system users from non-privileged end users.

28 PIPESERV

You must specify the number of the request to delete after the DELETE keyword. If you
are not authorised to delete the specified request number, the command is rejected. If a
request does not exist for the specified number, an error message is typed.

The keyword CANCEL is a synonym for DELETE.

Querying the format of a timer stream output record
A timer command with the FORMAT keyword specified will display a record for each field
specified, containing the field name, start position of the field in the tmr output stream
record, and field length, separated by blanks. The length is not specified for the field
named STRI, since it is variable and unlimited.

The purpose of this function is to allow your application to dynamically identify the
fields instead of hardcoding the offsets. If the record layout is updated in future versions,
your application need no changes to adapt.

Please refer to “tmr output stream” on page 47 for a complete list of valid fields.

Figure 12 illustrates the FORMAT keyword.

 timer format origuser orignode stri

�ORIGUSER 77 8

�ORIGNODE 85 8

�STRI 125

�Ready(J); 2JJJ-J5-2J 16:48:J2 (SKOVGAF at GFORD1)

 tmr format

�HEADER 1 24

�REQNO 25 1J

�FMTCODE 35 2

�ENTRBASE 37 7

�ENTRDATE 44 8

�ENTRTIME 52 5

�LASTBASE 57 7

�LASTDATE 64 8

�LASTTIME 72 5

�ORIGUSER 77 8

�ORIGNODE 85 8

�TIMETYPE 93 1

�TIMEIPL 94 1

�TIMEREST 95 1

�TIMETIME 96 5

�DATEDATE 1J1 4

�DATETYPE 1J5 1

�DATEWDAY 1J6 1

�DATEREPT 1J7 1

�DELAY 1J8 5

�RANGE1 113 5

�RANGE2 118 5

�ACTION 123 1

�TYPE 124 1

�STRI 125

Figure 12. Sample output from timer format commands.

If you do not specify any fields, all fields are displayed, starting with a field named
HEADER. This covers the common PIPESERV output record prefix, as described in “tmr
output stream” on page 47.

 PIPESERV commands 29

 Programming interface

After having familiarised yourself with PIPESERV, you may want to take further advan-
tage of the facilities offered by PIPESERV. These include a number of streams that your
pipeline may connect to.

When coding applications, do not forget that the host command may identify the userid
that requested the execution by inspecting the variables ORIGUSER and ORIGNODE in
GLOBALV group PIPESERV. These variables contain the userid and RSCS nodeid
respectively, and for the duration of the command execution.

CMS stack and PIPESERV INITCMD file
When PIPESERV is started, it will look for a PIPESERV INITCMD file. If that file
exists on any accessed filemode, the commands therein are executed. Then all records -
if any - from the CMS stack are read and executed as commands. When the stack is
empty, commands entered on the CMS command line are accepted.

This feature is useful if you want certain commands executed immediately after
PIPESERV start, with PIPESERV fully running.

The timer command would be a good candidate for stacking. This is demonstrated in the
example “Collecting EREP, Account and Symptom records” on page 37.

Input and Output Streams
Figure 13 on page 31 illustrates the possible connections to the PIPESERV stage. Note
that the streams are not numbered as for example first output stream, secondary output
stream and so on, but instead marked with a streamid. It will be illustrated in examples
how you connect to them. Note that pipeline stream identifiers are case sensitive. All the
identifiers used to connect to PIPESERV are in lowercase.

The record formats are explained in “Input & output stream record formats” on page 45.

Log input stream
If you connect to the log input stream, your program may generate log records in addition
to the PIPESERV generated log records.

Command input stream
If you connect to the cmd input stream, your program may generate commands for exe-
cution, just as if they were entered from the terminal.

Alternate command input stream
If you connect to the cmdt input stream, your program may generate commands for exe-
cution, just as if they were entered from the terminal.

If the cmdt output stream is connected, then the command output is written to that stream
only; not to the console. In that case, one record only will be produced for each input
record, containing the original command, the console output, and the PIPESERV ready
message, separated by x'15' characters.

30 PIPESERV

 ┌──────────────────PIPESERV───────────────────┐

 │ │

�────┤log Log records CP)MSG IUCV: msg ├────�

 │ wng ├────�

 �────┤cmd Commands cp ├────�

 │ smsg├────�

 �────┤cmdt Commands vm ├────�

 │ emsg├────�

 │ imsg├────�

 │ scif├────�

 │ │

 │ Console/stack: stac├────�

 │ cons├────�

 │ │

│ Streams/INITCMD: cmd ├────�

 │ icmd├────�

 │ cmdt├────�

 │ │

│ Return codes: rc ├────�

 │ │

 │ Reader: irdr├────�

 │ rdr ├────�

 │ │

│ Timer: tmr ├────�

 │aaa│

 �────┤comx Programming exit streams comx├────�

 │ │

 �────┤msgx msgx├────�

 �────┤smsx smsx├────�

 �────┤conx conx├────�

 �────┤stax stax├────�

 �────┤cmdx cmdx├────�

 �────┤cmtx cmtx├────�

 �────┤icmx icmx├────�

 �────┤logx logx├────�

 └───┘

Figure 13. The possible connections to the PIPESERV stage

If the cmdt output stream is not connected, then the command output is written to the
console in the usual way.

If the rc and the cmdt output streams are both connected, then output records on the cmdt
and rc output streams, originating from a record on the cmdt input stream, are
synchronised, so that the record is written to the rc stream first.

CP *MSG IUCV output streams
If you connect to one or more of the CP *MSG IUCV output streams, your program has
access to the records from the CP *MSG service as they arrive. Each stream corresponds
to an IUCV class. Refer to the description of the starmsg stage in the pipeline reference
manual for a description of each class.

 Programming interface 31

Stack output stream
If you connect to the stac output stream, your program has access to all records that were
in the CMS stack when PIPESERV was started.

Console output stream
If you connect to the cons output stream, your program has access to all commands
entered on the console.

Reader file output streams
If you connect to the reader file output streams, your program will get information about
reader files. The irdr stream gives information about the reader files available when
PIPESERV is started. The rdr stream gives information about reader files as they arrive.

Timer output stream
When a timer request that specified the STREAM keyword expires, a record is written to
the tmr output stream.

Command output stream
The cmd output stream gives you access to the records written to the cmd input stream.

Alternate command output stream
The cmdt output stream gives you access to the records written to the cmdt input stream,
console output from the commands, and the PIPESERV ready message. See “Alternate
command input stream” on page 30 for a detailed explanation of the interaction with the
cmdt input stream and the rc output stream.

rc output stream
If connected, one record containing the return code is written for each command exe-
cuted. See “Alternate command input stream” on page 30 for a detailed explanation of
the interaction with the cmdt input stream and output streams.

icmd output stream
The icmd output stream gives you access to the records from the PIPESERV INITCMD
file when PIPESERV is started.

 Pre-processing exits
To control command execution in PIPESERV, it lets you modify and/or filter commands
from most sources before execution. The log records may be filtered or modified before
being written to the log file.

If doing this, you must conform to the internal record format, which is described in “Pre-
processing exit stream record formats” on page 51.

Also, please note that logging takes place before the exit point, except for the logging
exit itself.

Commands resulting from the expiry of a timer that specified the CMD keyword only
passes through the logging exit, and so do commands from the synchronous IUCV
command interface. Such commands cannot be changed before execution.

32 PIPESERV

The following list describes the purpose of each exit:

comx All commands except those explicitely excepted above pass through this exit.

msgx All commands from CP messages (MSG or MSGNOH) pass through this
exit, including messages arriving via RSCS.

smsx All commands from special messages (SMSG) pass through this exit.

conx All commands entered on the server console pass through this exit.

stax All commands entered via the CMS stack pass through this exit.

cmdx All commands entered via the cmd input stream pass through this exit.

cmtx All commands entered via the cmdt input stream pass through this exit.

icmx All commands entered via the PIPESERV INITCMD file pass through this
exit.

logx Logging records ready to be written to the PIPESERV log file may be freely
filtered or modified through this exit.

Refer to “Implementing your own application commands” on page 35 for an example of
how to use exits.

Synchronous IUCV command interface
The following describes the syntax for the synchronous command interface.

��──iucvclient──serverid──name──cmd───────────────────────────────�0

iucvclient The name of the pipeline stage that activates a synchronous
IUCV communication.

serverid The userid of the server running PIPESERV.

name cmd Identifies the IUCV service requested from the server. Only the
service cmd is supported by PIPESERV. Do not confuse the
service with the cmd PIPESERV command.

The host or PIPESERV command that you want the server to execute must be input on
the primary stream to the iucvclient stage.

The command output is written to the primary output stream.

Only one command may be sent into the IUCV interface at a time. This is a restriction in
the PIPESERV design. The restriction also applies to multiple commands separated by the
PIPESERV linend character. Any commands following the first will be ignored.

Included with PIPESERV is a sample program called PIPESERV EXEC that demonstrates
how you can use the IUCV interface with a timeout and recover the return or error code.

Refer to “Use of the synchronous IUCV interface in the server” on page 42 for further
guidance.

 Programming interface 33

 Programming Guide

This chapter gives some practical examples and advice of how to utilise the PIPESERV
features.

Using HI and HX
When developing applications under PIPESERV, you will sooner or later want to stop a
REXX program because it is looping or doing something else you don't want. To do that,
enter the CMS immediate command HI (Halt Interpretation), prefixed with the CP ter-
minal lineend character, for example

#HI

If you are running PIPESERV in IMMCMD mode, leave out the CP terminal lineend
character. See “PIPESERV syntax” on page 13 and “Managing console input” on page
15 for further information about IMMCMD mode.

PIPESERV will continue executing, but note that if you use the HX command (Halt
eXecution), PIPESERV will be halted as well.

If your program keeps placing you in VM READ, the old trick is to place the cursor at
the first position in the command input field, then press the "left arrow" key once, then
press ENTER, and then type your immediate command and press ENTER again. This
will bypass the VM READ condition, where the input is trapped by the program.

Stopping your application when PIPESERV stops
This could be more tricky than you would think at first glance. But remember that your
application is an independent program that may or may not know about the existence of
PIPESERV.

Nevertheless, when PIPESERV stops, you may well want your application to detect this
and stop as well.

The traditional way of closing down pipeline stages is to reflect EOF on a stream. If your
application connects to one or more of PIPESERV's input or output streams, you can
detect when they go to EOF and then close your application.

If you don't connect to any PIPESERV streams, you can set up an indefinite timer and
connect it to an input stream. When PIPESERV stop, it will issue a pipestop command,
which will in turn halt all stages waiting for external interrupts. To do this, add the
following to the start of your application:

'addpipe',

'| literal +999999999',

 '| delay',

'| append literal EOF',

 '|).in.J:'

This example connects to your primary input stream, but you can use any existing input
stream instead.

34 PIPESERV

When delay terminates, EOF will be reflected to append literal, which will in turn
produce one record and present it to your input stream.

Implementing your own application commands
When implementing an application with PIPESERV as the server, it is likely that you
want your application to process commands in some way. Since PIPESERV is already
connected to the CP *MSG IUCV service and other possible sources for commands, your
application would not be able to connect directly to these sources. PIPESERV offers a
variety of ways for your application to get access to incoming commands.

1. You can connect your application to one of the PIPESERV output streams described
in “Input & output stream record formats” on page 45. Thus, you can choose the
sources from which you are willing to accept commands: CP messages, CP warnings,
CP special messages, the CMS stack, the console, the cmd input stream, and reader
files.

But note that what is written to the output streams is also processed by PIPESERV's
command processor. So you need a way of separating the commands.

a. One way of doing this is to define your application commands to begin with the
asterisk character (*). Such a command will be ignored by CMS and PIPESERV,
but you can process it in your application. If you want this format to be trans-
parent to the clients, you can provide an interface program to add the asterisk to
the command in the client environment.

b. Another way is to create dummy EXEC's having the names of your application
commands. For example, if you want your application to process a command
named xyzstart, create an empty XYZSTART EXEC to avoid error messages
from PIPESERV's command processor. Then create a table of valid application
commands and use a lookup to filter out non-application commands.

2. Alternatively, you can connect your application to one of the provided pre-processing
exits described in “Pre-processing exits” on page 32. You may find that the COMX

exit is the most useful, since all commands pass through it before being presented to
the PIPESERV command processor. Using this exit, you can use an application
command table and lookup to filter out your application commands and forward the
remaining commands to PIPESERV's command processor. Figure 14 shows you
how to do that. A similar method can be used for the other exits.

/) Sample application)/

address command

'PIPE (end \)',

'| f: faninany', /) Feedback to exit)/

'| piplbl.comx: pipeserv', /) Run the server itself)/

'| l: lookup substr w1 of 25-) w1 detail', /) Valid appl. command?)/

'| yourappl', /) Feed to application)/

'\ disk VALID COMMANDS)', /) Read list of appl. commands)/

'| l:', /) Feed to lookup)/

'| f:' /) Feedback to exit)/

Figure 14. Use the comx exit to filter application commands */

 Programming Guide 35

Serial connections to PIPESERV
The simplest way to utilise the PIPESERV programming features is to connect to one or
more streams and use the available information.

When doing so, you must ensure that your application consumes output records from
PIPESERV in time for other parts of your application to continue running. While waiting
for your application to consume an output record, part or all of PIPESERV may be
unable to continue.

Often, good coding practice for pipeline stages will be a good choice. According to this
practice, your stage runs in a peekto - output - readto loop. This prevents your stage
from delaying the records. This will in most cases be suitable for applications of a syn-
chronous nature.

In some cases, a readto - output loop will be the right choice. For example, if your
pipeline stage starts a fullscreen application that waits for operator input, you probably do
not want PIPESERV operation to be suspended until the operator presses an attention
key.

Thus, when choosing your reading method, the question you should ask yourself is: "Do I
want PIPESERV to continue running and accepting input from the console and other
sources while my application is processing output?"

If you fail to consume PIPESERV output records, you may cause your application and/or
PIPESERV to stall. Particular care is required when connecting to the cmdt and rc output
streams at the same time. The rc output stream produces a record with the return code
from all commands executed in PIPESERV. The cmdt output stream produces an output
record for each command from the cmdt input stream. PIPESERV first writes the record
to the rc output stream, then waits for it to be consumed, and then writes the output
record to the cmdt stream. It is important that your application consumes the records in
the same order to avoid stalling.

Monitoring reader files
Figure 15 demonstrates how PIPESERV can be used to monitor reader files.

/) SHELL EXEC: Monitor reader files)/

address command

'PIPE (end \)',

'| piplbl.rdr: pipeserv', /) Run the server itself)/

'| fsr', /) Handle reader file records)/

'\ piplbl.irdr:', /) Connect to initial rdr info)/

'| irdrmsg:tolabel)' ||, /) Re-direct last record)/

'| fsr', /) Handle the records)/

'\ irdrmsg:', /) Get the last record)/

'| spec /SHELL: End of initial reader file processing/ 1',

'| console' /) Tell user when ready)/

Figure 15. SHELL EXEC: Monitor reader files

fsr is a user-written stage to decide how to handle different kind of reader files, for
example purging based on origin and file contents.

36 PIPESERV

The first fsr stage is connected to PIPESERV's rdr output stream, which generates a
record for each reader file arriving while PIPESERV is running.

The second fsr stage is connected to PIPESERV's irdr output stream, which generates a
record for each reader file existing when PIPESERV is started. The last record on this
output stream contains). This makes the pipeline able to determine when all initial reader
files have been handled and to display a message.

Figure 16 illustrates the resulting pipeline topology.

 piplbl:

I │ ┌────────┬────┐ ┌───┐

U │aaaa│pipeserv│ rdr├─┤fsr│

C │ │ │irdr├┐└───┘

V │ └────────┴────┘│ irdrmsg:

 │┌─────────┐ ┌───┐

 └┤tolabel)├─┤fsr│

 │ ├┐└───┘

 └─────────┘│┌────┐┌───────┐

 └┤spec├┤console│

 └────┘└───────┘

Figure 16. The pipeline topology resulting from SHELL EXEC

Note that piplbl is a pipeline label. rdr and irdr are stream identifiers. The stream
identifier is necessary to tell PIPESERV which streams you are connecting to. You
cannot rely on a PIPESERV stream having a specific stream number, even though you
might find out by experimenting. The stream numbers for PIPESERV are unspecified,
and they may change without notice. Furthermore, the stream numbers depend on how
many streams you connect to.

Running PIPESERV in parallel with other pipeline stages
In addition to connecting pipeline stages to PIPESERV, you may run stages in parallel
with PIPESERV. That is, you do not have to connect your stages to PIPESERV at all.

Collecting EREP, Account and Symptom records
Figure 17 on page 38 illustrates how to collect CP account, symptom and EREP records
in a virtual machine, using PIPESERV as the driver.

 Programming Guide 37

/) SYSRECS REXX: Collect account, symptom & EREP records)/

'commit J' /) Make sure data can flow)/

queue 'tmr 24 repeat cmd string acnt all' /) Close acnt every midnight)/

'addpipe pipeserv' /) Run pipeline server)/

'addpipe', /) Collect Account records)/

'| starsys)account',

'| >> account file a'

'addpipe', /) Collect EREP records)/

'| starsys)logrec',

'| >> erep file a'

'addpipe', /) Collect SYMPTOM records)/

'| starsys)symptom',

'| >> symptom file a'

Figure 17. SYSRECS REXX: Collect account, symptom & EREP records

To invoke SYSRECS REXX, you could simply use the command pipe sysrecs. Every
day at midnight, delay will release a record, which is changed into an SMSG command.
That command ensures that accounting is closed. Other commands could be useful. For
example a command to process the accumulated records.

Figure 18 illustrates the resulting pipeline topology.

I │ ┌────────┐

U │aaaa│pipeserv│

C │ │ │

V └────────┘

 │ ┌────────┐ ┌────────┐

 │aaaa│starsys ├─┤>> │

 │ │)account│ │ │

 │ └────────┘ └────────┘

 │ ┌────────┐ ┌────────┐

CP │aaaa│starsys ├─┤>> │

│ │)logrec │ │ │

 │ └────────┘ └────────┘

 │ ┌────────┐ ┌────────┐

 │aaaa│starsys ├─┤>> │

 │ │)symptom│ │ │

 └────────┘ └────────┘

Figure 18. The pipeline topology resulting from SYSRECS REXX

For those not familiar with ADDPIPE, Figure 19 on page 39 shows how to do the job with
only one PIPE command.

38 PIPESERV

/) SYSRECS EXEC: Alternative to SYSRECS REXX)/

address command

queue 'tmr 24 repeat cmd string acnt all' /) Close acnt every midnight)/

'PIPE (end \)',

'| pipeserv', /) Run pipeline server)/

'\ starsys)account',

'| >> account file a',

'\ starsys)logrec',

'| >> erep file a',

'\ starsys)symptom',

'| >> symptom file a'

Figure 19. SYSRECS EXEC: Alternative to SYSRECS REXX

Now, suppose that you wanted to take advantage of the cmd input stream instead of
queueing a command. You would then connect the output from spec to PIPESERV, as
illustrated in Figure 20:

/) SYSRECS EXEC: Coding with connection to PIPESERV)/

address command

'PIPE (end \)',

'| starsys)account',

'| >> account file a',

'\ starsys)logrec',

'| >> erep file a',

'\ starsys)symptom',

'| >> symptom file a',

'\ literal tmr 24 repeat cmd string acnt all',

'| piplbl.cmd: pipeserv'

Figure 20. SYSRECS EXEC: Coding with connection to PIPESERV

The resulting topology is illustrated in Figure 21.

 │ ┌────────┐ ┌────────┐

 │aa│starsys ├─┤>> │

 │ │)account│ │ │

 │ └────────┘ └────────┘

 │ ┌────────┐ ┌────────┐

CP│aa│starsys ├─┤>> │

 │ │)logrec │ │ │

 │ └────────┘ └────────┘

 │ ┌────────┐ ┌────────┐

 │aa│starsys ├─┤>> │

 │ │)symptom│ │ │

 │ └────────┘ └────────┘

 piplbl:

 ┌────────┐ ┌───┬────────┐

 │literal ├─┤cmd│pipeserv│

 │tmr... │ │ │ │

 └────────┘ └───┴────────┘

Figure 21. Topology when connecting to PIPESERV's command input

 Programming Guide 39

Real-life example of collecting account records
The critical reader will by now have noticed that the previous example of collecting
account records suffer a major inconvenience: The records are not separated into different
files for each date. This will prove impractical if you want to process your account data.

The following example has been taken from real-life collection of account data. This sol-
ution is plug-compatible with the RETRIEVE module.

To use this solution, replace the RETRIEVE command with a PIPE SYSRECS command.
Remember to remove any instructions to force the accounting userid at midnight, as this
may result in a loss of account records that are waiting in the I/O buffer to be written to
the account file. To avoid loss of records at shutdown, authorise a userid to issue the CP
ACNT ALL command, followed by a stop command.

Figure 23 illustrates the pipeline topology. The pipeline inside SYSRECS is rebuilt every
midnight to reflect the new day's account file. The SUSPEND stage is executed to allow
PIPESERV to complete its own midnight processing before SYSRECS continues.
PIPESERV has to close the current log file and create a pipeline stage to write the new
day's log file. If the SUSPEND stage is omitted, log records may end up in the wrong log
file. The PIPESERV stage is executing uninterrupted past the midnight boundaries. A
stop command will result in PIPESERV executing a PIPMOD STOP command, which in
turn will terminate the starsys stage. The complete pipeline set will thereby be terminated.
The midnight? flag will contain 0, if the pipeline set is terminated by PIPESERV, and
this will tell SYSRECS not to rebuild another account record processing pipeline.

 ┌────────────────────────────────SYSRECS──────────────────────────────┐

 │ eof: │

│ │ ┌────────┐ ┌────────┐┌───────┐┌────────┐│

CP│aaa│starsys ├─────────────────────────────┤faninany├┤tolabel├┤diskslow││

│ │ │)account│ ┌┤ ││eof ││ ││

 │ └────────┘ │└────────┘└───────┘└────────┘│

 │ cnt: │ │

│ ┌───────┐┌─────┐┌────┐┌─────┐ ┌──────┐│ │

 │ │literal├┤delay├┤spec├┤count├─┤buffer├┘ │ pipsrv:

 │ │24 │└─────┘│eof ││lines├┐└──────┘ │ ┌───┬────────┐

 │ └───────┘ └────┘└─────┘│┌─────────┐ ├─┤cmd│pipeserv│

 │ └┤var │ │ │ │ │

 │ │midnight?│ │ └───┴────────┘

 │ └─────────┘ │

 └───┘

Figure 23. Topology of the real-life accounting solution

Writing your own stages for parallel processing
Of course, you may write your own stages in REXX to run in parallel with PIPESERV.
Note especially the SUSPEND pipeline command. If your REXX program is performing
heavy processing between calls to pipeline like READTO and OUTPUT, PIPESERV will not
get a chance to process input. But if your program issues the SUSPEND pipeline command
at regular intervals, the pipeline dispatcher will give PIPESERV and other stages a chance
to execute.

40 PIPESERV

/)----------------------- SYSRECS REXX --------------------------

(c) Copyright International Business Machines Corporation 1994, 1999.

All Rights Reserved.

Function: Read system records from CP and write them to a file.

Change the output file at midnight.

How executed: As a pipeline filter

Syntax: PIPE SYSRECS

Disk output: ACCOUNT $Ammddyy A

Output streams: cmd (created dynamically and connected to PIPESERV)

--

Written by : Finn Skovgaard Date: 1994J5J9

Release: 1.J Fix Level: J

--)/

close = 1J /) Close for each 1J records)/

eof = copies('ff'x,8) /) EOF indicator)/

midnight? = 1 /) Initialise midnight flag)/

'addstream output cmd' /) Create a command stream)/

'addpipe).out.cmd:|pipsrv.cmd:pipsrv' /) Start the PIPESERV driver)/

do forever /) One iteration per day)/

'streamstate output cmd' /) PIPESERV still connected?)/

if rc > 8 | rc < J | ¬midnight? /) If not midnight)/

then leave /) Then get out of here)/

date = date('u') /) mm/dd/yy)/

 'callpipe',

'| var date',

'| change "/""', /) Remove / from date)/

'| var date' /) mmddyy)/

fid = 'ACCOUNT $A'date' A6' /) Current account file)/

'callpipe (end \)',

'| starsys)account', /) Connect to CP account)/

'| eof:faninany', /) Merge EOF string)/

'| tolabel 'eof ||, /) EOF at midnight)/

'| close:fanout', /) Copy records)/

'| diskslow 'fid' f 8J', /) Write the account records)/

'\ literal 24', /) Wake up at midnight)/

 '| delay',

'| spec /'eof'/ 1', /) EOF indicator)/

'| cnt:count lines',

'| buffer', /) Tolabel doesn't consume rec)/

 '| eof:',

 '\ cnt:',

'| var midnight?',

'\ close:', /) Get account records)/

'| spec 1 1', /) Keep just 1 byte)/

'| join 'close-1, /) Make 1 rec to control CLOSE)/

'| spec /FINIS)) A/ 1', /) Close file)/

 '| command'

 if midnight?

 then do

'suspend' /)Let PIPESERV complete process)/

'select output cmd' /) Prepare for a command)/

'output cmd diskclea' /) Clean up old files)/

call diag 8,'SPOOL CONS CLOSE'

 end

end

Figure 22. Real-life example of collecting accounting records

Using PIPESERV with an active, parallel XEDIT environment
It is possible to have a hidden, active XEDIT environment in parallel with PIPESERV.
To obtain that, first start XEDIT, and then start PIPESERV from the XEDIT command
line. You have now at least the following possibilities to access the XEDIT environment:

 Programming Guide 41

1. Use the address xedit command. This will allow you to interactively direct com-
mands to the XEDIT environment.

2. Use the pipeline xedit stage. This will allow you to access the file data in the XEDIT
environment directly.

3. Use the pipeline subcom xedit stage. This will allow you to direct commands to the
XEDIT environment.

4. Use the rexx address xedit command. This will allow you to direct commands to the
XEDIT environment and get variables stored in PIPESERV's interactive REXX
processor. The XEDIT EXTRACT command would be a good candidate for this
purpose.

5. Address the XEDIT environment from a REXX program executing as a command
under or in parallel with PIPESERV. This could be an XEDIT macro.

Use of the synchronous IUCV interface in the server
For applications running in parallel with PIPESERV, it may sometimes be useful to be
able to exchange information with PIPESERV. One way to do this would be to connect
to various of PIPESERV's input and output streams or to send CP messages (MSG) or
special messages (SMSG) to the server id. But this would involve asynchronous coding,
which can be complicated and even unreliable if not the greatest care is taken.

The easiest method is to use the synchronous IUCV interface. The following sample
EXEC illustrates how to set up the communication.

'commit J'

'callpipe literal +3 | delay | hole'

'callpipe literal pquery | iucvclient PIPEUSER name cmd | stem tmrq.'

do i = 1 to tmrq.J

 ...

Figure 24. Parallel application using the synchronous IUCV interface

commit is necessary to ensure that PIPESERV has been started.

The first callpipe command allows time for PIPESERV to initialise.

The second callpipe command will send the pquery command to PIPESERV and store
the response in the rexx array tmrq. To activate the application, issue the command

pipe (end \) pipeserv \ test

Note that there are no stream connections between the two stages.

42 PIPESERV

 Restrictions

� Do not start other applications using the CP *MSG service while PIPESERV is
active. PROP, WAKEUP, VMSERVE, APBOX, TODEVENT, and HMF are all
examples of such applications.

� Do not define more than one invocation of PIPESERV, as they would compete about
the same resources.

� If you update files on the minidisk where PIPESERV maintains the log file, the
changes are not immediately reflected in the CMS file index on the disk, unless you
specify logwrite safe in the configuration file. This behaviour is determined by
the CMS minidisk architecture.

In this case, if the userid is logged off while running PIPESERV, files and/or file
updates may be lost. To prevent this, PIPESERV will detect if the logoff command
or a valid abbreviation of it is entered. PIPESERV will then stack the logoff

command and issue a stop command to itself. This feature does not depend on the
source (for example console or cmd input stream) of the logoff command. However,
if the logoff command is prefixed with cp or executed from a program, PIPESERV
will not detect it.

Alternatively, a FINIS)) A command may be issued by the user or a program.
This will ensure rewriting of the CMS file index on the disk up to that point.

� The RAC command interface to RACF uses SMSG. PIPESERV will change a RAC

command into a RACF (BATCH command. But PIPESERV cannot trap a RAC

command entered from a fullscreen application like XEDIT. If you accidentally
enter a RAC command that cannot be trapped by PIPESERV, your userid will hang
for at least 60 seconds due to the minimum timeout setting in the RAC interface.

� You must prefix immediate CMS commands with the CP terminal linend character if
you do not specify the IMMCMD option on the PIPESERV command.

� While a host command is active, PIPESERV cannot handle timer activities, inter-
rupts, or anything else. These will be held until PIPESERV is active again. While
fullscreen applications like XEDIT may be executed from PIPESERV, you should be
aware that PIPESERV is inactive until you exit the fullscreen application and see the
Ready message.

� If you define a secondary userid for the userid running PIPESERV, some of the
IUCV records from the CP *MSG service will be sent to the secondary userid. Thus,
they will not be available to PIPESERV or any pipelines connected to PIPESERV's
output streams for the affected IUCV classes, which are at least 1 (messages created
by a CP MSG or MSGNOH command) and 7 (CP informational messages). This
behaviour is determined by the design of CP.

� Execution of host commands that manipulates the timer via REXX is likely to cause
problems for PIPESERV and should be avoided.

� Do not manipulate the MSG, IMSG, SMSG, WNG, EMSG, CPCONIO, and
VMCONIO CP settings while PIPESERV is active.

� If you execute rexx commands that contains pipeline commands like CALLPIPE and
ADDPIPE from another userid or via CP MSG, CP SMSG, the cmdt input stream, or
the synchronous IUCV interface, console output from other executing stages may end
up together with the command output instead of on the console. This only applies if

 Restrictions 43

the pipeline commands are executed directly in the rexx environment. If called via a
host interface, there will be no interference.

� The PC file transfer program IND$FILE causes PIPESERV to hang and should be
avoided.

If executing a pipeline command like CALLPIPE or ADDPIPE from another userid, via
the cmdt input stream, or via the synchronous IUCV interface, console output des-
tined for the server may be mixed up with console output from the pipeline
command. This is due to the design of CMS Pipelines and PIPESERV. For ADDPIPE

commands, it is unpredictable if any console output is written to the server console
or to the command origin, because of its asynchronous nature.

� If during PIPESERV startup the minidisk or directory accessed as A has not enough
space for PIPESERV to update its control files, PIPESERV will terminate imme-
diately.

� If during operation the minidisk or directory accessed as A has not enough space for
PIPESERV to update its control files, timer and reminder commands will be rejected
unless volatile.

� If logging to the filemode specified in the configuration file cannot continue due to
lack of space, logging will continue to the console.

� You cannot use the logx pre-processing exit if you specify LOGWRITE OFF in the
PIPESERV configuration file.

44 PIPESERV

Input & output stream record formats

cmd input stream
Free format. The records will be executed as commands and copied to the cmd output
stream, unless otherwise defined by a pre-processing exit.

cmdt input stream
Free format. The records will be executed as commands, unless otherwise defined by a
pre-processing exit.

log input stream
The input records may contain free-format text that you want to place in PIPESERV's log
file. PIPESERV will automatically prefix your records with a timestamp, "User", your
userid and RSCS nodeid.

CP *MSG IUCV output streams
Columns Description

1-8 IUCV class in the format JJJJJJJn, where n is an IUCV class (1-8).

In the case of a MSG from a userid, delivered by the local RSCS machine,
the format will be RUJJJJJ1 (Remote User).

In the case of a MSG from an RSCS server on a different node, delivered by
the local RSCS machine, the format will be RRJJJJJ1 (Remote Rscs).

9-16 Origin userid.

17-24 Origin nodeid.

25-* Text.

Note that in case of a remote MSG delivered by the RSCS server, the prefix
of From nodeid(userid): or From nodeid: has been removed by
PIPESERV.

PIPESERV issues some SMSG'es to itself to manage commands from other
userids. Therefore, you may find some records beginning with)CMD) in the
text part for SMSG (IUCV class 4) records. They are issued whenever a
command from another userid has finished execution.

stac output stream
Columns Description

1-7 Blanks.

8 "Q" (short for Queue).

 Input 45 output stream record formats 45

9-16 Origin userid.

17-24 Origin nodeid.

25-* The stacked record.

cons output stream
Columns Description

1-7 Blanks.

8 "C" (short for Console).

9-16 Origin userid.

17-24 Origin nodeid.

25-* The console input record.

rdr and irdr file output streams
Note: Reader files in SYSHOLD status are ignored, since they cannot be fully processed
by PIPESERV.

Columns Description

1-4 Spool file id.

6-13 Origin userid.

15-22 Origin nodeid.

24-31 Filename.

33-40 Filetype.

42-43 Return code from the CMS RDR command.

45 Reader class.

46 "1": File has been transferred.
"J": File has not been transferred.

47 "1": File is from another node.
"J": File is from the same host.

49-51 Unit record device type.

53-60 Distribution code.

62-69 File creation date in the format yyyymmdd.

71-78 File creation time in the format hh:mm:dd.

80-87 Number of records in the spool file.

89 Hold status:
"n": None.
"U": User hold.

91 Diagnose F8 secure spool file origin available:
"1": Yes.
"J": No.

46 PIPESERV

93-100 If column 91 = "1" and network file, then origin userid.

102-109 If column 91 = "1" and network file, then origin RSCS nodeid.

111-120 The number of kilebytes (1024 bytes) occupied by the spool file. The
number is derived from the number of 4k blocks occupied. Thus, the preci-
sion is limited accordingly.

The last record from the irdr output stream contains only an asterisk (*) in column 1.

tmr output stream
Please also refer to the description of the timer format command: “TIMER” on page 22,
which describes how you can access PIPESERV's internal list of the following field and
column values.

Table 2 (Page 1 of 3). Record layout of the tmr output stream

Field
name

Columns Description

HEADER 1-7 Blanks.

8 "T" (short for Timer).

9-16 Userid that requested the timer.

17-24 RSCS nodeid of the userid.

REQNO 25-34 Request number: A unique, decimal number assigned
by PIPESERV. Right justified, blank padded.

FMTCODE 35-36 Format code: A decimal number indicating the level of
timer record layout. Right justified, padded with zeroes.

ENTRBASE 37-43 Entry date in base format: The date where the timer
command was entered. A decimal number indicating
the number of days since and including 01.01.0001, and
including the entry day. Gregorian calender correction
is disregarded. Right justified, blank padded.

ENTRDATE 44-51 Entry date in yyyymmdd format (year month day): The
date where the timer command was entered.

ENTRTIME 52-56 Entry time in seconds: The time of day where the timer
command was entered. Right justified. Padded with
zeroes.

LASTBASE 57-63 Date of last expiry in base format: The date where the
timer request last expired. A decimal number indi-
cating the number of days since and including
01.01.0001, and including the entry day. Gregorian
calender correction is disregarded. Right justified, blank
padded.

LASTDATE 64-71 Date of last expiry in yyyymmdd format (year month
day): The date where the timer request last expired.

 Input 47 output stream record formats 47

Table 2 (Page 2 of 3). Record layout of the tmr output stream

Field
name

Columns Description

LASTTIME 72-76 Time of last expiry in seconds: The time of day where
the timer request last expired. Right justified. Padded
with zeroes.

ORIGUSER 77-84 Origin userid: The userid that entered the timer
command. Left justified.

ORIGNODE 85-92 Origin nodeid: The RSCS nodeid of the origin userid.
Left justified.

TIMETYPE 93 Type of timer: A: Absolute, R: Relative, S: Start offset,
P: Past whole hour.

TIMEIPL 94 Ipl type? "1": Yes, "0": No, blank: Bypass ipl test, "-":
Not ipl timer type.

TIMEREST 95 Restart type? "1": Yes, "0": No, blank: Bypass restart
test, "-": Not ipl timer type.

TIMETIME 96-100 Time: Time to execute request, according to timer type.
Seconds, right justified, padded with zeroes.

DATEDATE 101-104 Date: Date to execute request: "mmdd": On the speci-
fied month and day, " dd": On the specified day in any
month, " " (blank): On any day.

DATETYPE 105 Type of day to execute request: O: On the date, L: Last
day of the month, 1, 2, 3, 4, and 5: Respectively on the
first, second, third, fourth, and fifth occurence of the
weekday specified in a month.

DATEWDAY 106 Weekday: 1: Monday, 2: Tuesday, 3: Wednesday, 4:
Thursday, 5: Friday, 6: Saturday, 7: Sunday, W:
Weekday (Mo-Fr), E: Weekend, "*": Any day.

DATEREPT 107 Repeat flag: "1" if request is to expired repeatedly, "0"
if not.

DELAY 108-112 Delay in seconds: The number of seconds after a
request should have expired where it will expire on
PIPESERV initialisation. Right justified, padded with
zeroes.

RANGE1 113-117 Start of range in seconds: The first time of the day
where the request can expire. Right justified. Padded
with zeroes.

RANGE2 118-122 End of range in seconds: The last time of the day
where the request can expire. Right justified. Padded
with zeroes.

ACTION 123 Action requested: C: Execute as command, R:
Reminder, S: Write record to output stream.

TYPE 124 Type of timer: P: Permanent, T: Temporary, V: Vola-
tile.

48 PIPESERV

Table 2 (Page 3 of 3). Record layout of the tmr output stream

Field
name

Columns Description

STRI 125-* String: The string specified.

cmd output stream
Columns Description

1-7 Blanks.

8 "S" (short for Stream).

9-16 Origin userid.

17-24 Origin nodeid.

25-* The command from the cmd input stream.

cmdt output stream
The cmdt output stream will write one record for each command presented on the cmdt
input stream. One input record containing more than one command, separated by the
PIPESERV lineend character, is treated as individual commands. Each record is divided
into a number of logical records, separated by the character x'15'.

The format of the first logical record is

Columns Description

1-7 Blanks.

8 "s" (short for Stream).

9-16 Origin userid.

17-24 Origin RSCS nodeid.

25-* The command from the cmdt input stream.

The following logical records contain the console output from the execution of the
command from the input stream, including the PIPESERV ready message.

If the rc output stream is also connected, the records on the rc and cmdt output streams
are synchronised for the commands originating from the cmdt input stream. The output
record is first written to the rc output stream, then to the cmdt output stream.

rc output stream
Columns Description

1-8 The source of the command executed, right justified:

C Command entered on the server console.

 Input 49 output stream record formats 49

I Command from the PIPESERV INITCMD file at PIPESERV
initialisation.

i Command from the PIPESERV INITCMD file at an rlddata
command.

Q Command from the CMS stack (queue).

S Command from the cmd input stream.

s Command from the cmdt input stream.

t Command from an expired timer command.

IUCVCMD Command from the synchronous IUCV interface.

00000001 Command from a CP message (MSG or MSGNOH).

00000004 Command from a CP special message (SMSG).

9-16 Origin userid.

17-24 Origin RSCS nodeid.

25-*

Word 1 The return code from the command execution or an asterisk (*) if
an unauthorised command was attempted.

Word 2-* The command being executed.

icmd output stream
Columns Description

1-7 Blanks.

8 "I" (short for Initcmd).

9-16 Origin userid.

17-24 Origin RSCS nodeid.

25-* The command from the PIPESERV INITCMD file.

50 PIPESERV

Pre-processing exit stream record formats

 comx exit
Columns Description

1-8 The source of the command executed, right justified:

C Command entered on the server console.

I Command from the PIPESERV INITCMD file at PIPESERV
initialisation.

Q Command from the CMS stack (queue).

S Command from the cmd input stream.

s Command from the cmdt input stream.

00000001 Command from a CP message (MSG or MSGNOH).

00000004 Command from a CP special message (SMSG).

9-16 Origin userid.

17-24 Origin RSCS nodeid.

25-*

Word 1 The return code form the command execution.

Word 2-* The command being executed.

 cmdx exit
The records have the same format as the cmd output stream.

 cmtx exit
Columns Description

1-7 Blanks.

8 "s" (short for Stream).

9-16 Origin userid.

17-24 Origin RSCS nodeid.

25-* The command from the cmdt input stream.

 icmx exit
The records have the same format as the icmd output stream.

 Pre-processing exit stream record formats 51

 conx exit
The records have the same format as the cons output stream.

 stax exit
The records have the same format as the stac output stream.

 msgx exit
The records have the same format as the msg output stream.

 smsx exit
The records have the same format as the smsg output stream.

 logx exit
The records have the same format as the log file records described in “Log file format”
on page 53.

52 PIPESERV

Log file format

Columns Description

1-8 Date in the format yyyymmdd.

10-17 Time in the format hh:mm:ss.

19-26 Log record type (see below).

28-35 Userid.

37-44 RSCS nodeid.

46-* Log text.

Log record types
Type Description

Pipeserv PIPESERV driver messages.

Initcmd Records from the PIPESERV INITCMD file.

InitcmdR Records from the PIPESERV INITCMD file that was reloaded.

Stack Records that were in the CMS stack when PIPESERV was started.

Console Console input.

StrmCmd Records from the cmd input stream.

StrmCmdt Records from the cmdt input stream.

TimerExp When timer expires, action requested by a timer command.

TimerEnd The last time a particular timer expires and so will no longer be repeated.

Reader Reader file information.

Ireader Initial reader file information.

User User-written log records from the log input stream.

*M1:Msg CP *MSG service IUCV class 1 (message).

*M2:Wng CP *MSG service IUCV class 2 (warning). This is only logged if you
connect to the wng output stream.

*M3:Cp CP *MSG service IUCV class 3 (cpconio).

*M4:Smsg CP *MSG service IUCV class 4 (smsg).

*M5:Vm CP *MSG service IUCV class 5 (vmconio).

*M6:Emsg CP *MSG service IUCV class 6 (emsg).

*M7:Imsg CP *MSG service IUCV class 7 (imsg).

*M8:Scif CP *MSG service IUCV class 8 (scif).

IucvReq IUCV connection request received from a client.

IucvCmd IUCV command received from a client.

 Log file format 53

PIPESERV return codes

RC Description

0 Normal return from PIPESERV.

4 The command input stream to the internal PIPESERV command processor
has disappeared. Possibly by incorrect use of the debug or rexx command.
Start PIPESERV again.

8 The required level of CMS Pipelines has not been loaded. Refer to the
requirements section to see where to find CMS Pipelines.

12 PIPESERV cannot execute in CMS subset. Enter RETURN to exit from CMS
subset and try again.

16 PIPESERV could not commit to level 0, where data can flow. Examine your
application programs for possible initialisation errors to determine if they are
not starting up.

20 You are trying to start PIPESERV on an unsupported level of VM. Upgrade
your VM system or move your PIPESERV application to a system with a
supported level of VM.

24 You specified an invalid option on the PIPESERV command. Correct the
syntax and try again.

28 You are trying to start PIPESERV on an unsupported level of CMS.
Upgrade CMS or move your PIPESERV application to a system with a sup-
ported level of CMS.

32 A compatibility problem has occurred when reading the PIPESERV control
files from a previous version of PIPESERV. If you do not need saved timer
or reminder commands, simply erase the control files using the following
commands: pipe command ERASE PIPESERV savetmr and pipe command
ERASE PIPESERV saveext. Note that all saved timer or reminder commands
will be lost. If you do need the commands, try to examine the files to deter-
mine which commands were saved. After erasing or renaming the files, issue
the commands to PIPESERV, which will then create new files.

36 You have specified an invalid configuration file on the PIPESERV command.
Examine the syntax and try again.

40 The configuration file you specified on the PIPESERV command was not
found. Verify that all required minidisks and SFS directories are accessed.

44 When reading the configuration file, PIPESERV encountered an invalid state-
ment. Verify the syntax in the configuration file and try again.

48 You have connected to only one of a pre-processing exit's input or output
streams. Both input and output streams must be connected. Correct your pipe-
line topology and try again.

52 PIPESERV could not update its control files on filemode A. Verify that the
filemode is accessed R/W, and that space is available.

54 PIPESERV could not update the LASTING GLOBALV file on filemode A.
Verify that the filemode is accessed R/W, and that space is available.

54 PIPESERV

56 You have connected to the logx pre-processing exit, which is provided to let
your pipeline modify or filter the log records before they are written to the
PIPESERV log file. However, the PIPESERV configuration file you are using
specifies LOGWRITE OFF. Thus, the part of PIPESERV that updates the log
file is inactive, and you cannot connect to it via the exit. You must either
change the

58 You have connected to the irdr output stream, which is provided to give your
pipeline access to an informational record for each reader that exists when
PIPESERV is started. However, PIPESERV was invoked with the
NOINITRDR option, which means that no records will be generated on the irdr
output stream. You must either remove the NOINITRDR option or the con-
nection to the irdr output stream.

60 You have connected to the cmd output stream, which is provided to give your
pipeline access to records entered to PIPESERV on the cmd input stream.
However, you have not connected to the cmd input stream, so no records will
be generated on the cmd output stream. You must either remove the output
connection or add the input connection.

62 You have connected to the cmdt output stream, which is provided to give
your pipeline access to commands and command output for commands
entered to PIPESERV on the cmdt input stream. However, you have not con-
nected to the cmdt input stream, so no records will be generated on the cmdt
output stream. You must either remove the output connection or add the
input connection.

1xxxx Error updating PIPESERV's control files on filemode A. RC-10000 is the
return code from EXECIO. Ensure that a R/W filemode A is accessed, and
that space is available. Then try again.

20000 An undefined REXX variable was encountered in PIPESERV. This could be
an internal PIPESERV error or be caused by incorrect use of the debug
command.

2xxxx An REXX syntax error was encountered in PIPESERV. This could be an
internal PIPESERV error or be caused by incorrect use of the debug
command. RC-20000 is the REXX syntax error return code.

-4095 The pipeline has stalled. Investigate your application pipelines for possible
stalling problems.

 PIPESERV return codes 55

 Program logic

This part of the document is for those who are curious to know how PIPESERV is
working, and to support the author's volatile memory.

 Diagram notation
Bullets (�) denote optional connections, depending on external stream connections or
PIPESERV options.

Bullets followed or preceded by a word indicate stream identifiers, for example �tmr.

External pipeline stages and external interfaces are written in capitals.

Unless otherwise indicated, the direction of flow is right or down.

Arrowheads (i j 0 �) in the diagram indicate the direction of flow.

Double arrowheads indicate external interfaces.

Words followed by a colon (:) are pipeline labels.

Similar stages, serially connected, performing similar functions (for example 3 spec
stages) may be abbreviated to one box in the diagram, indicating the number and kind of
stages.

Numbering of the input streams for faninany and output streams for fanout cannot be
determined from the diagrams.

Question marks (?) refer to separate diagrams.

 PIPESERV REXX
Figure 25 on page 57 shows the PIPESERV REXX flow. PIPESERV REXX is the main
driver.

56 PIPESERV

 ┌──┐ tmr: pip89

pip- │ conin: conl: cons: cmdmrg1: cmdmrg2: niucv: fiucv: ┌─────PIPESERV─────┐│ ┌──────┐ ┌────┐

4J┌──────┐ 6┌───┐┌────┐┌────┐┌───┐ ce ┌───┐ ┌───┐┌───┐┌───────┐ ce ┌───┐g:│ %con├┘┌┤fanout├┬┤copy├atmr

��│cons ├�a┼┤fan├┤ela ├┤spec├┤fan├┬aoxa┤fan├──┤fan├┤fan├┤nfind ├aoxa┤fan├┤├┤%cmd tmr├a┘└──────┘│└────┘ lcmdtrc: sync: icmdtrc:

 └──────┘ a│in ││stic│└────┘│out││ ni │out├┐┌┤in ││in ││IUCVCON├┐mi┌┤in │ │ rc├a──────┐ │┌───────┐ ┌───┐┌────┐┌────┐

 ┌──────┐ 5│any│└────┘ └───┘│ xt └───┘│5│any││1 │└───────┘│xt││any│ │ %inf├──────┐└───┤elastic├a┤loc├┤sync├┤fani├arc�� pip6J/

��│immcmd│ │└───┘ │ ││└───┘│2 │ └──┘└───┘ ?┤%rld %clp├─────┐│ │└───────┘ │s ├──────┤nany│con_out_rc

│CMD ├──┘ │ ││ ┌�┤J │ ?┤dynamic IUCV %mnh│────┐││ └───┐ └───┘ └────┘

└──────┘ iucvl: │ ││ │┌┤ │ ?┤dynamic timer %lgp├a──┐│││iucvfb:│ me: lcl: pip19

41┌──────┐┌────┐ ┌──────┐ │ ││ │5└───┘ │ %lgm├a─┐│││6┌─────┐│┌────────┐ ┌─────┐┌────────┐ ┌───────┐┌──┐

��│oldcon├┤spec├──────────┤fanout├┬│─a───────│┴0─┐││ ┌─┤%tmr %tmr├─┐││││├┤fanin├│┤nlocate ├─┤xlate├┤nlocate ├─┤spec SM├┤cp│

 │cmd │└────┘ └──────┘││ │ │││ │┌┤%aut %aut├┐│││││5│any │││thisuser├┐│x15 ?││thisnode├┐│rscsid.│└──┘

 └──────┘ ┌────┐ icml: ││ icmd: │ │││ ││└──────────────────┘666666│└─────┘││thisnode││└─────┘└────────┘│└───────┘

42┌────────┐│loc&│┌──────┐ ││┌──────┐ │ │││ │└─────────?──────────┘││││││ │└────────┘│┌────┐┌───────┐ │┌──────┐┌──┐

��│PIPESERV├┤spec├┤fanout├┬aicmxa─││┤fanout├─│───│┤│ └──────────?───────────┘│││││ │ └┤spec├┤console│ └┤spec ├┤cp│

│INITCMD │└────┘└──────┘│ exit ││└──────┘ │ │││ ┌───┘││││┌──────┘ └────┘└───────┘ │msgcmd│└──┘

 └────────┘ stal: │ ││ stac: └───────│──│││││─────acons�� pip9J └──────┘

42┌─────┐┌────┐┌──────┐ │ ││┌──────┐ ┌──┴─│──│││││─────astac�� pip9J

��│STACK├┤spec├┤fanout├┬───astaxa─││┤fanout├────┘││ 6┌───────┐ │││└│───────────────┐

 └─────┘└────┘└──────┘│ │ exit ││└──────┘ ││ └┤literal├┐ ││└─│──────────────┐│

pipJ1 g: │ │ ││ ││ │running││┌──────────────────────────────────┐│└──│─────────────┐││

┌───┐┌─────┐┌───┐┌──┐ │ │ a│ ││ └───────┘│a ┌───────┐┌───┐pipJJ └│───┘ │││

│lit├┤delay├┤app├┤ga├┤ │ │ ││ │└──┐ ││ │literal││dup│┌─────┐ │ logfile: │││

│+99│└─────┘│lit││te│ 6 6 66 └──┐│ 66 pip1J │24 ├┤) ├┤delay├┐ └─┐ ┌────────┐│││

└───┘ g: └───┘│ │ └──┴───────┼┼───────────────┬││─────────┼┼┐ log: └───────┘└───┘└─────┘└─────┐└─────┤┌──┐rexx││││

pip15 │ │ 55┌───────┐┌────┐55│ 55│┌─────┐ ┌──────┐┌────┐┌─────┐┌────┐└──────┼┤ga│┌──┐││││

��loga┤ ├─────────────────────────││┤elastic├┤spec├a││ ││└┤fanin├a┤ many ├┤spec├┤time-├┤spec├┐ ││te││di│││││

 │ │ aa└───────┘└────┘ ││ ││ │any │││change│└────┘│stamp│└────┘└alogxa┼┼──┼┤sk│││││

 g: ┌────┐ cmdtl: ││ ││ ││ └─────┘│└──────┘┌────┐└─────┘ │└──┘└──┘││││

pip89 │ │┌───────┐│spec│┌──────┐ ││ ││ ││ └────────┤hole│ └────────┘│││

��cmdta┤ ├┤elastic├┤cmd ├┤fanout├─┴│─acmtxa──────a─�┤│ ││ └────┘ ┌────┘││

│ │└───────┘└────┘└──────┘ │ exit ├─0────────││──────────────────────────────┐ │┌────┘│

 g: ┌────┐ cmdl: │ cmd: 5│ │└─────────────────────────────┐│ ││┌────┘

pip89 │ │┌───────┐│spec│┌──────┐ │ ┌──────┐ a└─────────│──────────────────────────────││─────────────────│││──────────aicmd�� pip9J

��cmda┤ ├┤elastic├┤cmd ├┤fanout├───┴─acmdxa┤fanout├─┴─�────────│──────────────────────────────││─────────────────│││──────────acmd �� pip9J

 │ │└───────┘└────┘└──────┘ exit └──────┘ └─────────────────────────────┐││ │││

pip2J brake: nobrake: rscsmsgo: ┌────────────────────────────────┐rscsmsgi: iucl: │││ │││

 ┌───────┐┌────┐ ┌─────┐┌────┐┌─────────┐│ rscscons: rmt1: pip35 │ ┌─────┐┌──────┐5││ │││

��│STARMSG├┤nloc├──┤fanin├┤spec├┤nlocate ├┘┌──────┐ ┌────┐ ┌─────┐ ┌────┐└─┤fanin├┤fanout├┤││ │││

 └───────┘│STOP├┐┌┤any ││node││rscs From├─┤fanout├┬──┤loc ├┬┤xlate├─┤spec├�┬┤any │└──────┘6││ │││

┌─────────┐└────┘65└─────┘└────┘└─────────┘ └──────┘a └────┘│└─────┘ └────┘ 5└─────┘ │││ │││

│ brake1: └──────┘│ ┌───────0─┘ └───────┐┌────┐ │ │││ │││

│┌───────┐pip31 │┌────────┐ │┌────┐┌─────────┐┌───────┐└┤spec├─┘ │││ │││

└┤nloc 21├─────────┤pipestop│ pip36�└┤spec├┤npick CMD├┤console│ └────┘ │││ │││

p└───────┴────────┘└────────┘ └────┘└─────────┘└───────┘ │││ │││

i┌───┘││ │││

p│ iucv1: ┌────────┐┌───────────┐pip6J ││ │││

36┌────┐ msg: ┌┤pick CMD├┤spec /JJ/ 1├──�┤ │││

J└┤nloc├┐ ┌──────┐ 5└────────┘└───────────┘ ││ │││

 │1 ├─amsgxa┤fanout├─┼──┐ ││ │││

p └────┘│ exit └──────┘ │ │ dl: pip51 │5 │││

i┌──────┘ │ │ ┌─────────┐ ┌──────┐ ┌────┐┌─────────┐┌────┐ ││ │││

p│ iucv2: │ └a┤nloc rscs├────┤lookup├─┤spec├┤npick CMD├┤cons│ ││ │││

5│┌────┐ wng: │ └─────────┘ ┌┤ ├┐└────┘└─────────┘└────┘ ││ │││

J└┤nloc├┐┌──────┐ │ ┌──────┐┌────┐5└──────┘│┌────┐┌─────────┐┌────┐┌────┐ ││ │││

 │2 ├─┤fanout├──────┬────a┤2 spec├┤cons││ └┤spec├┤npick CMD├┤spec├┤cons│ ││ │││

 └────┘│└──────┘ ││ └──────┘└────┘│ └────┘└─────────┘└────┘└────┘ ││ │││

 ┌──────┘ ││ pip515 └──││─────────────────┘││

 │ iucv3: ││ ││ ││

 │┌────┐ cp: ││ ││ ││

 └┤nloc├┐┌──────┐ ││ ││ ││

 │3 ├─┤fanout├─────┬──┐ ││ ││

 └────┘│└──────┘ ││││ ││pip6J ││

 ┌──────┘ ││││ pip5J │└────────┐ ││

 │ iucv4: ┌───┐│ ││

 │┌────┐ │││││ iucvcl1: iucvcl2: cmdtcl1: cmdtcl2: iucvdest: │ smsg: 55 ││

 └┤nloc├┐ │││││┌───────────┐ ┌─────────┐ ┌──────┐ ┌─────┐ ┌─────┐ │┌──────┐││ ││

│4 ├──────────────────┤nloc ├─┤nloc ├─┤nloc ├─┤nloc ├───────┤nloc ├asmsxa───────┤fanout├┴┘ ││

 └────┘│ ││││││)IUCVSTART)├┐│)IUCVEND)├┐│)CMDT ├┐│)CMDT├┐ │)CMD)├┐exit │└──────┘ ││

 ┌──────┘ ││││6└───────────┘│└─────────┘││START)│││END) ││ └─────┘│┌────┐┌───┐│ jux: ││

 │ iucv5: p ││││├0────────────┘ pip61 │└──────┘│└─────┘│ └┤spec├┤lit├─┐┌─────┐pip6J ││

 │┌────┐ vm: i ││││├0────────────────────────┴0───────┴0──────┘ └────┘└───┘│└┤juxta├───────────│┘

 └┤nloc├┐┌──────┐p61 ││││6 pip61┌────┐┌──┤pose │ │

 │5 ├─┤fanout├───┬───�┤ pip6J ┌──────────────────────────┤spec├┘│ └─────┘ │

 └────┘│└──────┘ ││││││ ┌────────┐ 5 └────┘ │ │

 ┌──────┘ ││││││ 6clmove: └────│───┘

 │ iucv6: p ││││││ pip6J │┌────┐ │┌─────────┐┌────┐┌───┐┌────────┐ │Dynamic per reply:

│┌────┐ emsg: i ││││││ cf: toclient: └┤rexx├─aa────│┤tolabel ├┤spec├┤buf├┤iucvmove├─│────────────────────��IUCV

 └┤nloc├┐┌──────┐p61│││││6┌─────┐┌───────────┐┌┤) │ ││)IUCVEND)│└────┘└───┘└────────┘ │

 │6 ├─┤fanout├──┬────�┴┤fanin├┤between ├┘└────┘either │└─────────┘ │ sync:

 └────┘│└──────┘ ││││││ │any ││)IUCVSTART)│ ┌────────────a cmdtend: cmdtfan: │ ┌──────┐┌───────┐││

┌──────┘ ││││││ └─────┘│)IUCVEND) ├a┘tocmdt: or │pip6J ┌─────┐┌────┐ ┌───┐┌────┐│┌┤change├┤elastic├┤├acmdt��

 │ iucv7: ││││││ └───────────┘│┌───────────┐│┌──────┐│ ├┤spec├─┤fan├┤join├─┘└──────┘└───────┘││

 │┌────┐ imsg: ││││││ pip51 └┤between ├│┤nfind ├┤nfind│├────┤ │in ││cont││┌───────────────────ardr ��

└┤nloc├┐┌──────┐ ││││││ ┌────┐┌────┐ │)CMDTSTART)│││)start││)end ├┤spec├─┤any││x15 │││

 │7 ├─┤fanout├─┬──────┬a┤spec├┤cons│ │)CMDTEND) ├┘└──────┘└─────┘└────┘ └───┘└────┘││┌──────────────────airdr��

└────┘│└──────┘ ││││││││ └────┘└────┘pip7J └───────────┘ rdr: ┌┬───────────────────┘││

 ┌──────┘ ││││││││┌────┐┌─────┐┌────────┐┌──┐┌────┐┌────┐┌──────┐55 ┌────┐┌────┐ ││ #───────amsg ��

 │ iucv8: │││││││└┤spec├┤2 loc├┤spec Q R├┤cp├┤FRDR├┤spec├┤fanout├─┼a┤spec├┤cons│ pip9J ││ #───────awng ��

 │┌────┐ scif: │││││││ └────┘└─────┘└────────┘└──┘└────┘└────┘└──────┘│6 └────┘└────┘┌────┐ ││ #───────acp ��

 └┤nloc├┤┌──────┐ │││││││ ┌────┐┌────┐┌────┐ pip9J irdr: ┌────┐ │└a────────────┤spec├─┘│ #───────asmsg��

 │8 ├─┤fanout├┬───────a┤spec├┤spec├┤cons│┌──┐┌────┐┌──────┐┌┤spec├─a──┘┌────────┐ └────┘ │ #───────avm ��

└────┘ └──────┘││││││││ └────┘└────┘└────┘│cp├┤FRDR├┤fanout├┤└────┘ ┌┤append)├────────────┘ #───────aemsg��

 ││││││││ pip515 └──┘└────┘└──────┘└──────────┘└────────┘ pip9J #───────aimsg��

 ###───────ascif��

Figure 25. PIPESERV REXX flow

Figure 26 on page 58 illustrates the PIPESERV dynamic timer input connections. For
every outstanding timer or reminder request, a temporary pipeline exists and is connected
to a PIPESERV input stream. When the timer expires, the pipeline disappears, and the
unconnected input stream is available for recycling by another timer request. If there are
no unconnected input streams, a new will be created by PIPESERV.

 Program logic 57

 ┌─────PIPESERV─────┐

┌───────┐┌─────┐┌────┐ │ │

│literal├┤delay├┤spec├─┤dynamic timer │

│delay..│└─────┘└────┘ │ │

└───────┘ │ │

┌───────┐┌─────┐┌────┐ │ │

│literal├┤delay├┤spec├─┤dynamic timer │

│delay..│└─────┘└────┘ │ │

└───────┘ │ │

┌───────┐┌─────┐┌────┐ │ │

│literal├┤delay├┤spec├─┤dynamic timer │

│delay..│└─────┘└────┘ │ │

└───────┘ │ │

┌───────┐┌─────┐┌────┐ │ │

│literal├┤delay├┤spec├─┤dynamic timer │

│delay..│└─────┘└────┘ │ │

└───────┘ │ │

 │ │

 Etc. └──────────────────┘

Figure 26. PIPESERV dynamic timer input connections

Figure 27 on page 59 illustrates the principle of the PIPESERV authorisation filters.
When PIPESERV is initialised or restarted, or when the rlddata command is issued, the
PIPESERV AUTHUSER file is read and transformed into a cascade of pipeline filters.
Every command will be written to the AUTH output stream, except if originating from the
PIPESERV user itself. The filters will try to match the command to the patterns speci-
fied in the authorisation file. A matching record will be written to the AUTH input stream.
A record slipping through all the filters without match will be changed into a "J" and
written to the AUTH input stream. This ensures that exactly one record is written to the
input stream for every record written to the output stream. If there is no match, the
command in question is rejected.

The filters make use of the nfind stage's facility of a blank character matching any char-
acter, and an underscore matching a blank.

In this example, the following commands would be authorised:

1. rlddata commands from JOHNDOE at VMNODE.

2. Any command starting with "Q" from JOHNDOE at VMNODE. For example QUERY
DISK.

3. rexx commands from any user at VMNODE.

4. Any command from THISDOE at VMNODE.

5. rexx commands that have SAY as the first argument, from any user at any node
starting with VM, for example VMGB5.

58 PIPESERV

 ┌──┐

 6 1: │

 │┌────────────────────────┐ all: │

 └┤nfind ├┐ ┌─────┐┌─PIPESERV─┐┌────┐│

 │JOHNDOE_VMNODE__RLDD____├─────�┬┬┬┬┬┤fanin├┤%aut %aut├┤copy├┘

 └────────────────────────┘│ 55555│any │└──────────┘└────┘

 ┌──────────────────────────┘ │││││└─────┘

 6 2: │││││

 │┌────────────────────────┐ │││││

 └┤nfind ├┐ │││││

 │JOHNDOE_VMNODE__Q ├──────┘││││

 └────────────────────────┘│ ││││

 ┌──────────────────────────┘ ││││

 6 3: ││││

 │┌────────────────────────┐ ││││

 └┤nfind ├┐ ││││

 │ VMNODE__REXX____├───────┘│││

 └────────────────────────┘│ │││

 ┌──────────────────────────┘ │││

 6 4: │││

 │┌────────────────┐ │││

 └┤nfind ├┐ │││

 │THISDOE_VMNODE__├────────────────┘││

 └────────────────┘│ ││

 ┌──────────────────┘ ││

 6 5: ││

 │┌────────────────────────────────┐ ││

 └┤nfind ├┐││

 │ VM REXX____SAY_____├─┘│

 └────────────────────────────────┘│ │

 ┌──────────────────────────────────┘ │

 6┌──────┐ │

 └┤spec J├────────────────────────────┘

 └──────┘

Figure 27. PIPESERV AUTH input and output connections

The authorisation records that created this example are illustrated in Figure 28.

 JOHNDOE VMNODE RLDD

 JOHNDOE VMNODE Q)

) VMNODE REXX

 THISDOE VMNODE)

) VM) REXX SAY

Figure 28. Authorisation records example

 Program logic 59

 Index

Special Characters
*MSG IUCV connection feature 3
*MSG output streams, feature 4

A
Account records example 37
ACNT records example 37
Action keywords for timer command 25
Addition of pipelines dynamically, feature 3
ADDRESS command 17
Alternate command input stream 30
Alternate command input stream, format 45
Alternate command output stream 32
Alternate command output stream, format 49
Application commands 35
Authorisation file 8, 9
Authorisation of commands, feature 3

B
Basic features 3

C
CMD command 17
cmd input stream 30
cmd input stream, format 45
cmd input/output stream feature 4
cmd output stream 32
cmd output stream, format 49
cmdt input stream 30
cmdt input stream, format 45
cmdt output stream 32
cmdt output stream, format 49
cmdx pre-processing exit 4, 32, 51
CMS stack 4, 30
CMS stack feature 3
cmtx pre-processing exit 4, 32, 51
Command authorisation feature 3
Command file, initial, feature 3
Command input stream 30
Command input stream, alternate 30
Command input stream, alternate, format 45
Command input stream, format 45
Command input stream, synchronous 30
Command input stream, synchronous, format 45
Command output stream 32
Command output stream, alternate 32
Command output stream, alternate, format 49
Command output stream, format 49

Command output stream, synchronous 32
Command output stream, synchronous, format 49
Command pre-processing exits, feature 4
Commands, PIPESERV 15
comx exit 51
comx pre-processing exit 4, 32
Configuration file 7, 13
cons output stream 32
cons output stream feature 4
cons output stream, format 46
CONSOLE option 13
Console output stream 32
Console output stream, format 46
Console output suppression feature 3
conx pre-processing exit 4, 32, 52
CP *MSG IUCV connection feature 3
CP *MSG IUCV output streams, format 45
CP *MSG output streams, feature 4
CP LINEND character 3
cp output stream 31
cp output stream, format 45
CPCONIO IUCV connection feature 3
Creating a timer request 22
Customising 7

D
Date keywords for timer command 24
DEBUG command 18
Deleting a timer request 28
DISPLAY option 13
Dynamic pipeline addition feature 3

E
EMSG IUCV connection feature 3
emsg output stream 31
emsg output stream, format 45
Environment, subcommand, feature 3
EREP records example 37
Examples 10, 34
Exit stream record formats 51
Exits, pre-processing 32, 35
Exits, pre-processing, feature 4

F
Features overview 3
Features, basic 3
Features, optional 3
Features, optional programming 4

60 PIPESERV

Format keyword of timer command 29
Format of timer output stream 47

G
Getting started 10

H
Host command shell feature 3
Host commands 16
Housekeeping of log files, feature 3

I
icmd output stream 32
icmd output stream, format 50
icmx pre-processing exit 4, 32, 51
IMMCMD option 13
IMSG IUCV connection feature 3
imsg output stream 31
imsg output stream, format 45
INITCMD output stream, format 50
Initial command file feature 3
INITRDR option 13
Input stream, alternate command, feature 4
Input stream, command, feature 4
Input streams 30
Input streams, feature 4
Installation 6
Interactive REXX feature 3
irdr output stream 32
irdr output stream feature 4
irdr output stream, format 46
IUCV 33
IUCV connection feature 3
IUCV interface, synchronous, feature 4
IUCV output streams, format 45
IUCVxxxx pipeline stages 33

L
Limitations 43
Lineend character feature 3
LINEND character, CP 3
Log file format 53
log input stream 30
log input stream feature 4
log input stream, format 45
Log record types 53
Logging feature 3
Logic 56
Logical lineend feature 3
logx pre-processing exit 4, 32, 52

M
MSG IUCV connection feature 3
msg output stream 31
msg output stream, format 45
msgx pre-processing exit 4, 32, 52

N
Nodeid keyword for timer command 25
NODISPLAY option 13
NOINITRDR option 13
NORDYMSG option 13

O
Operating systems required 6
Optional features 3
Options 13
Output stream, alternate command, feature 4
Output stream, command, feature 4
Output stream, console, feature 4
Output stream, initcmd, feature 4
Output stream, initial reader file, feature 4
Output stream, reader file, feature 4
Output stream, return code, feature 4
Output stream, stack, feature 4
Output stream, synchronous command, feature 4
Output stream, warning, feature 4
Output streams 30
Output streams, CP *MSG, feature 4
Output streams, feature 4

P
Parallel processing 37
Pipeline addition dynamically, feature 3
Pipeline level required 6
PIPESERV AUTHUSER 8
PIPESERV commands 15
PIPESERV CONFIG 3, 7, 13
PIPESERV INITCMD 3, 9, 30
PIPESERV SAMPAUTH 8
PIPESERV SAMPCONF 7
PIPESERV SAMPINIT 9
Planning 6
PQUERY command 18
PQUERY feature 3
Pre-processing exit stream record formats 51
Pre-processing exits 32, 35
Pre-processing exits, feature 4
Pre-requisites 6
Programming guide 34
Programming interface 30
Programming interface, feature 4

 Index 61

Q
Query timer record format 29
Querying a timer request 27

R
Range keyword for timer command 25
rc output stream 32
rc output stream, format 49
rdr output stream 32
rdr output stream feature 4
rdr output stream, format 46
RDYMSG option 13
Reader file information feature 3, 4
Reader file output streams 32
Reader file output streams, format 46
Ready message suppression feature 3
Record format for log file 53
Record format of timer stream, query 29
Record formats for input & output streams 45
Reload authorisation file 21
Reload feature 3
REMINDER command 20
Reminder feature 3
Remote command feature 3
Repeat keyword for timer command 25
Request types for timer command 26
Requirements 6
RESTART command 20
Restart feature 3
Restrictions 43
Return code output stream 32
Return code output stream, format 49
Return codes 54
REXX command 20
REXX feature 3
REXX feature, interactive 3
RLDDATA command 21
Rlddata command, feature 3

S
SCIF IUCV connection feature 3
scif output stream 31
scif output stream, format 45
Serial connections 36
Shell for host commands, feature 3
SMSG IUCV connection feature 3
smsg output stream 31
smsg output stream, format 45
smsx pre-processing exit 4, 32, 52
stac output stream 32
stac output stream feature 4
stac output stream, format 45

Stack 30
Stack feature 3
Stack output stream 32
Stack output stream feature 4
Stack output stream, format 45
stax pre-processing exit 4, 32, 52
STOP command 21
Streams 30
String keyword for timer command 26
Subcommand environment 17
Subcommand environment feature 3
Suppressing console output, feature 3
Suppressing ready message, feature 3
SYMPTOM records example 37
Synchronous command input stream 30
Synchronous command input stream, format 45
Synchronous command output stream 32
Synchronous command output stream, format 49
Synchronous IUCV command interface 33
Synchronous IUCV interface feature 4
Synchronous return code output stream, format 49
Syntax 13

T
Tailoring 7
Time keywords for timer command 22
TIMER command 22
Timer feature 3, 4
Timer output stream 32
timer output stream, format 47
Timer record format, query 29
tmr output stream 32
tmr output stream feature 4
tmr output stream, format 47
Trapping of CP *MSG records, feature 3

V
vm output stream 31
vm output stream, format 45

W
wng output stream 31
wng output stream, format 45

62 PIPESERV

	Contents
	Preface
	What is PIPESERV?
	Syntax Notation and Typography
	Examples

	Summary of changes
	Edition 1.2.6, 3 May 2002
	Edition 1.2.5, 12 April 2002
	Edition 1.2.4, 3 August 2000
	Edition 1.2.3, 11 May 2000
	Edition 1.2.2, 21 May 1999
	Edition 1.2.1, 15 April 1999
	Edition 1.1.1, 4 April 1997
	Edition 1.1, 22 November 1996
	Edition 1.0, 14 November 1996
	Edition 1.0 draft, 28 September 1994
	Edition 0.19, 15 July 1994
	Edition 0.18, 27 May 1994
	Edition 0.17, 20 May 1994
	Known problems
	Timer weekday ignored

	Features overview
	Basic features
	Optional features
	Optional programming features
	Overview

	Planning and Installation
	Requirements
	Installation
	Tailoring
	PIPESERV CONFIG
	PIPESERV AUTHUSER
	PIPESERV INITCMD

	Getting started
	PIPESERV syntax
	PIPESERV commands
	Managing console input
	CONSOLE
	IMMCMD

	Command syntax
	host command
	CMD
	ADDRESS (subcommand environment)
	DEBUG
	PQUERY
	REMINDER
	RESTART
	REXX
	RLDDATA
	STOP
	TIMER
	Creating a timer request
	Querying a timer request
	Deleting a timer request
	Querying the format of a timer stream output record

	Programming interface
	CMS stack and PIPESERV INITCMD file
	Input and Output Streams
	Log input stream
	Command input stream
	Alternate command input stream
	CP *MSG IUCV output streams
	Stack output stream
	Console output stream
	Reader file output streams
	Timer output stream
	Command output stream
	Alternate command output stream
	rc output stream
	icmd output stream

	Pre-processing exits
	Synchronous IUCV command interface

	Programming Guide
	Using HI and HX
	Stopping your application when PIPESERV stops
	Implementing your own application commands
	Serial connections to PIPESERV
	Monitoring reader files

	Running PIPESERV in parallel with other pipeline stages
	Collecting EREP, Account and Symptom records
	Real-life example of collecting account records
	Writing your own stages for parallel processing

	Using PIPESERV with an active, parallel XEDIT environment
	Use of the synchronous IUCV interface in the server

	Restrictions
	Input & output stream record formats
	cmd input stream
	cmdt input stream
	log input stream
	CP *MSG IUCV output streams
	stac output stream
	cons output stream
	rdr and irdr file output streams
	tmr output stream
	cmd output stream
	cmdt output stream
	rc output stream
	icmd output stream

	Pre-processing exit stream record formats
	comx exit
	cmdx exit
	cmtx exit
	icmx exit
	conx exit
	stax exit
	msgx exit
	smsx exit
	logx exit

	Log file format
	Log record types

	PIPESERV return codes
	Program logic
	Diagram notation
	PIPESERV REXX

	Index

