
 TECHNIQUES FOR BUILDING SERVICE MACHINES WITH CMS PIPELINES

 Melinda Varian

 Office of Computing and Information Technology
 Princeton University
 87 Prospect Avenue
 Princeton, NJ 08544 USA
 —.—
 BITNET: MAINT@PUCC
 Internet: maint@pucc.princeton.edu
 Telephone: (609) 258-6016

 SHARE 83, Session 2607
 August, 1994

 I. AN EXAMPLE (STARMSG, IMMCMD, AND PIPESTOP)

CMS Pipelines is a very powerful tool for building service machines. If you use Pipes for your
personal computing, you have already learned most of what you need to know to use it for writing
servers. However, there are a few CMS Pipelines stages that are particularly useful in servers that
you may not yet have experience with. Those are what I will be discussing today. Let’s jump
right in and look at a service machine that we have running at Princeton. Although this is a very
small example, it is a real one and illustrates some useful techniques:

 /* DUMYSMTP EXEC: Divert SMTP's spool files to BABYBEAR's SMTP */

 'PIPE (endchar ? name DummySMTP)',
 ' starmsg CP SET IMSG IUCV', /* Listen for file arrivals. */
 '| find 00000007'Translate(Left(userid(),8),'_',' ')'RDR FILE'||,
 '| b: nlocate 41.8 /VMBITNET/', /* (Don't want war with RSCS.)*/
 '| spec 26.4 1', /* Pick out just the spoolid. */
 '| f: faninany', /* Merge in other stream, too.*/
 '| spec', /* Format CP commands: */
 '/TAG FILE/ 1', /* TAG FILE */
 'word 1 nextword', /* nnnn */
 '/BABYBEAR SMTPB/ nextword', /* BABYBEAR SMTPB */
 'write', /* ----------------------- */
 '/SLEEP 1 SEC/ 1', /* SLEEP 1 SEC */
 'write', /* ----------------------- */
 '/TRANSFER/ 1', /* TRANSFER */
 'word 1 nextword', /* nnnn */
 '/VMBITNET/ nextword', /* VMBITNET. */
 (continued)



Page 2 Building Piped Servers
———————————————————————————————————————

 '| cp', /* Issue CP commands. */
 '? b:', /* File came from RSCS; bad! */
 '| y: faninany', /* Merge in other stream, too.*/
 '| spec', /* Build TRANSFER command. */
 '/TRANSFER/ 1 word 2 nextword /MAINT/ nextword',
 '| cp', /* Issue TRANSFER command. */
 '? cp query rdr all *', /* Prime the pipeline. */
 '| drop 1', /* Drop header or only line. */
 '| n: nfind VMBITNET' ||, /* (Don't want war with RSCS.)*/
 '| spec word 2 1', /* Pick out just the spoolid. */
 '| f:', /* Go transfer the file(s). */
 '? n: | y:', /* Send bad file to MWV. */
 '? immcmd CP', /* CP immediate command. */
 '| cp', /* Pass command to CP. */
 '? immcmd STOP', /* STOP was typed on console. */
 '| pipestop' /* So stop the pipeline. */

 'CP SET IMSG ON' /* Restore normalcy. */

Our mailer virtual machines have algorithms for distributing Internet traffic among our SMTP
service machines. (We require multiple SMTP servers to handle the load.) When we decided to
move one of the SMTPs to our P/370, BABYBEAR, we didn’t want to modify the mailers to
know how to send SMTP traffic to another RSCS node, so we wrote this little server to run in one
of the SMTP machines and forward any files it receives to SMTPB on BABYBEAR.

The starmsg pipeline stage connects to the CP *MSG system service and routes any messages
received from that service into the pipeline. When starmsg starts up, it issues its argument string
as a command. In this case, it issues a CP SET IMSG IUCV command to tell CP to route any
information messages for this virtual machine via the *MSG service. So, the starmsg sits there
waiting for CP to give it IMSGes. When a message is received, starmsg prefixes it with a
16-byte header consisting of the message class and the origin userid and then writes it to its
output. find discards messages we are not interested in, keeping only those that contain IMSGes
“from” this virtual machine that begin with the text “RDR FILE”. These will be messages about
the arrival of reader files, e.g.:

 RDR FILE 5677 SENT FROM VMMAIL . . .

The nlocate stage confirms that the file was not transferred from our RSCS virtual machine,
VMBITNET. If it was, then the message record is diverted to the second segment in the pipeline,
where it is transformed into a CP TRANSFER command that will transfer the file to me to check.
(That little test is there to prevent this server and RSCS from getting into a loop transferring the
same file back and forth for some reason.) If the file is one we want to process, a spec stage is
used to pick out the spoolid and another spec stage converts each spoolid record into three CP
commands, a TAG, a SLEEP, and a TRANSFER. The cp stage issues those commands, and all is
quiet until another message arrives.

You will note that there are three other pipeline segments that we haven’t yet discussed. The
third segment of the pipeline runs once as soon as the pipeline is initiated. It issues a CP QUERY



Building Piped Servers Page 3
———————————————————————————————————————

RDR command in case there are already some files in the virtual machine’s reader. If there are,
the response from QUERY RDR is transformed into spoolid records and those records are fed
into the secondary input of the faninany stage and then processed in the same way as the spoolid
records extracted from the file arrival messages.

The last two segments of the pipeline process commands typed on the virtual machine console.
The two immcmd stages are also started as soon as the pipeline starts up. Their arguments specify
that they wish to see any console commands that begin with “CP” and “STOP”, respectively. If a
command starting with “CP” is typed on the console, the first immcmd stage receives it as a
record (with the string “CP” removed). It passes that record to a cp stage, which executes it as a
CP command. The second immcmd stage is given control when the string “STOP” is typed on
the console. It simply copies its input record to its output, which is connected to the input of
pipestop.

As soon as pipestop receives an input record, it posts any stage in the pipeline specification that is
waiting on an ECB for an external event. The only such stages in this pipeline are starmsg and
the two immcmd stages; they all terminate when they are posted. When starmsg terminates, the
input stream for find is severed, which causes it also to terminate, thus severing the input for
nlocate and causing it to terminate. This termination process cascades through the pipeline until
all the stages have terminated, at which time the PIPE command completes. (If you are using a
version of CMS Pipelines that doesn’t support pipestop, the same effect can be achieved by
converting a record into a PIPMOD STOP command and passing that to a command stage.)

In this example, if the user had wished to terminate the processing of messages, but to leave the
processing of immediate commands running, he could instead have typed “hmsg” on the console
to terminate only the starmsg stage. CMS Pipelines sets up the “hmsg” immediate command
automatically when it sets up a starmsg stage for the *MSG system service.

starmsg can be used to connect to system services other than *MSG. To use it to connect to
some other CP service, simply specify the service as the first argument, e.g., starmsg *msgall.

 II. STARSYS

Although starmsg can be used to connect to both one-way and two-way system services, starsys
is preferred for connecting to the two-way services, such as *ACCOUNT. This fragment is from
the pipeline that runs in OPERACCT on our VM/ESA system:

 'CP RECORDING ACCOUNT ON LIMIT 100'

 'PIPE',
 'starsys *account |', /* Connect to *ACCOUNT (2-way).*/
 'nfind 'type5'|', /* Discard Type 5 records. */
 'nfind 'type8'|', /* Discard Type 8 records. */
 'nlocate 13.8 =V/SIE = |', /* Discard V/SIE records. */
 . . .
 'pipchgrt |', /* Post to $File and Tranfile. */
 . . .



Page 4 Building Piped Servers
———————————————————————————————————————

starmsg accepts input from CP as quickly as CP can deliver it, even if that means that starmsg
must buffer a large number of records. starsys accepts only one record at a time and does not
acknowledge receipt until its own output record has been consumed. If you use starsys *account
and make sure that all of the stages between starsys and the stage that completes your accounting
process do not delay the record, you can be sure that if your pipeline fails or your system crashes,
no unprocessed accounting records will be lost. CP will not discard a record until its receipt has
been acknowledged, and starsys will not acknowledge receipt until your pipeline has processed
the record.

Incidentally, if you aren’t familiar with the concept of delaying the record, that is something you
should learn about before implementing a server of any complexity. There are several places to
go for explanations of this concept; the one I most recommend is in the paper CMS Pipelines
Explained by the author of CMS Pipelines, John Hartmann. I have also included a discussion of
record delay in Appendix C in my handout.

 III. PROCESSING SERVER PARAMETERS

When writing a server, one often needs to deal with parsing a parameter file and with making the
parameters available throughout the server. The CMS Pipelines REXX device drivers can make
that very easy to do. This is a fragment from a subroutine called by one of my servers during its
initialization:

 /*-------------------------------------------------------------*/
 /* Set up array of local parameters for use by caller and by */
 /* its subroutines. First read the BITFTP PARMS file and */
 /* convert each entry into an item in the "PARM." array. */
 /*-------------------------------------------------------------*/

 'PIPE (name ParmSet1)', /* Set local parameters: */
 '< bitftp parms |', /* Read parameter file. */
 'chop string =/*= |', /* Chop off comments. */
 'locate /=/ |', /* Require "assignment". */
 'xlate fs = field 1 upper |', /* Upper-case the name. */
 'spec fieldseparator =', /* Format to be VARLOADable: */
 '/=PARM./ 1',
 'field 1 strip next', /* =PARM.name=value */
 '/=/ next',
 'fields 2-* strip next |',
 'varload' /* Load into my environment. */

That pipeline parses a parameter file that has REXX-like syntax and converts each entry from the
file into a variable whose name is in the form “PARM.entryname” and whose value is the value
specified in the file. It formats the names and values of these variables into records in the format
required by the varload stage in order to load the variables into its REXX environment. Then,
after the parameter file has been processed, the subroutine pokes about to determine some other
values that will be needed by the server:



Building Piped Servers Page 5
———————————————————————————————————————

 /*-------------------------------------------------------------*/
 /* Issue a CMS IDENTIFY command to get more items for the */
 /* "PARM." array. */
 /*-------------------------------------------------------------*/

 'IDENTIFY ( STACK LIFO'
 Parse Pull parm.myself . parm.sysname . parm.rscsname . . ,
 parm.timezone .

 /*-------------------------------------------------------------*/
 /* Use RXSOCKET to determine my host's Internet name. */
 /*-------------------------------------------------------------*/

 Parse Value Socket('Initialize','Get') With RC .
 Do While RC ¬= 0
 Say 'Waiting to initialize socket'
 'CP SLEEP 1 MIN'
 Parse Value Socket('Initialize','Get') With RC .
 End
 Parse Value Socket('GetHostName') With RC hostname
 Parse Value Socket('GetDomainName') With RC domainname
 Parse Value Socket('Terminate','Get') With RC .

 parm.hostnode = hostname'.'domainname /* My Internet host name.*/

When it has finished building the PARM. variables, it extracts them from its REXX environment
and stores them in its caller’s REXX environment:

 /*-------------------------------------------------------------*/
 /* Load the "PARM." array into the caller's REXX environment. */
 /*-------------------------------------------------------------*/

 'PIPE (name ParmSet3)', /* "PARM." stem into caller: */
 'rexxvars toload |', /* Load all my variables. */
 'find PARM.|', /* Select PARM. entries. */
 'varload 1 |', /* Load into caller. */
 'stem parmsave. 1' /* And save VARLOADable, too. */

rexxvars toload loads all exposed REXX variables into this pipeline and writes records in the
format expected by varload. The find stage selects the records that are of interest. varload 1
stores them in the REXX environment one level back; that is, it stores them in the EXEC that
called this EXEC, so that it can use them in its processing. stem parmsave. 1 also stores the
PARM. values in the caller, but instead of storing them as individual variables, it stores them as
the stemmed array PARMSAVE., in the format expected by the varload pipeline stage. Then,



Page 6 Building Piped Servers
———————————————————————————————————————

when the caller runs the main pipeline for this application, any REXX stage can load the PARM.
variables into its own REXX environment by using this subroutine pipeline:

 'CALLPIPE (name ParmLoad)',
 'stem parmsave. main |', /* Load parms from main EXEC. */
 'varload' /* Load into my environment. */

The main option on the stem stage says to reference the REXX environment that issued the PIPE
command. If you are running a version of CMS Pipelines that doesn’t support the main option,
you can specify the number of environments to go back. If you are running a version that doesn’t
support the toload option, it isn’t difficult to achieve the same effect with a few pipeline stages.

 IV. DELAY

In writing servers, one often needs to perform actions at specific times on certain days or after a
specific interval. Both are easy to do in CMS Pipelines by using the delay stage. In this example,
any Class C reader files are taken out of hold once every 45 minutes, and the calling pipeline is
then prodded to examine them:

 'CALLPIPE (name DelayCmd)',
 ' literal +45:00', /* Once every 45 minutes. */
 '| duplicate *', /* Forever. */
 '| delay', /* Wake up. */
 '| spec /CHANGE RDR CLASS C NOHOLD/', /* Make a CHANGE cmd. */
 '| cp', /* Release Class C files. */
 '| nlocate /NO/', /* If no files, don't prime. */
 '| spec /00000004* RDR FILE/', /* Fake file arrival. */
 '| *:' /* Prime the pipeline. */

The literal creates a record that says “+45:00”, and that record is duplicated repeatedly. delay
reads a record, interprets it as a request to wait for 45 minutes and does that. When it wakes up, it
writes the record to its output and reads another from its input, which causes it to wait for another
45 minutes. The record delay wrote to its output is converted into a CP CHANGE RDR
command, which is then executed. If the response from the CHANGE command is not “NO
FILES CHANGED”, the response is changed into a record that simulates a reader file arrival
message. That is fed into the calling pipeline to prompt it to take some action.

Waking up at a specific time is equally easy. This fragment is from a piece of code that sets the
variable “delay” to the next time the CP monitor should be started, 9:45 or 13:45 on a weekday:



Building Piped Servers Page 7
———————————————————————————————————————

 Select
 When today = 'Friday' & , /* After 15:45 Friday? */
 minutes >= 945
 Then delay = '81:45' /* Wait til 09:45 Monday. */
 When today = 'Saturday' /* Saturday? */
 Then delay = '57:45' /* Wait til 09:45 Monday. */
 When today = 'Sunday' /* Sunday? */
 Then delay = '33:45' /* Wait til 09:45 Monday. */
 . . .

(The time of day is in terms of a 24-hour clock, but the value can be specified non-traditionally.)
Once the variable “delay” has been set, this pipeline is invoked to wait:

 'PIPE (endchar ?)',
 'literal' delay '|', /* Time we need to wake up.*/
 'delay |', /* Wait until then. */
 'specs /Delay expired./ 1 |', /* Remember what happened. */
 'fin: faninany |', /* One of two reasons. */
 'take 1 |', /* Stop on first one. */
 'var reason', /* Save reason. */
 '?',
 'immcmd STOP|', /* Stop if we're asked to. */
 'specs /Stopped./ 1 |', /* Remember what happened. */
 'fin:' /* Feed to FANINANY. */

This pipeline terminates as soon as a record reaches the take 1 stage. That may be the result of
the expiration of the timer or of a “STOP” command being typed on the console. The reason for
stopping is stored in the variable “reason”, to allow the EXEC to decide what to do next.

Similarly, this subroutine pipeline passes a record to its caller at midnight every night:

 'CALLPIPE',
 'literal +24:00:00 |', /* Once a day. */
 'duplicate * |', /* Forever. */
 'literal 23:59:59 |', /* At midnight. */
 'delay |', /* Get a timer pop. */
 'spec /STATS: QUOTA CLEANUP/ |', /* Build a CLEANUP cmd. */
 '*:' /* Write into pipeline. */



Page 8 Building Piped Servers
———————————————————————————————————————

 V. MANAGING A LOG FILE

In most cases, it is best to make your server one big pipeline with one or more streams running
from end-to-end. I have found it convenient to have a stream running the length of my servers for
sending records into a stage that manages the server’s log file. This example is from a stage that
is used by a server that needs to preserve its log in case of a system crash:

 /*-------------------------------------------------------------*/
 /* Connect to the main pipeline and read in records to be */
 /* written to a log file. End the subroutine pipeline when */
 /* 4000 records have been written and then send the file to */
 /* the specified recipient, erase it, and start over again. */
 /* If the input stream is severed (mostly likely because the */
 /* SHUTDOWN EXEC on OPERATOR has sent us a SHUTDOWN command), */
 /* write and send whatever we have received; then terminate. */
 /*-------------------------------------------------------------*/

 Do Forever /* Do until end-of-file. */

 'PEEKTO' /* Notice end-of-file. */

 'CALLPIPE (name ManageLog)', /* Print log every 4000 lines: */
 '*: |', /* Input from pipeline. */
 'take 4000 |', /* Get a file's worth (or eof).*/
 'pad 1 |', /* Retain null lines. */
 'chop 132 |', /* Make sure printable. */
 'diskslow' file '|', /* Don't block writes. */
 'spec', /* Convert every fifth... */
 'read read read read', /* ...record that is written...*/
 '/FINIS * * A/ 1 |', /* ...into a FINIS command. */
 'command' /* Issue the FINIS commands. */

 Address Command 'CP SPOOL PRT TO' parm.loguser
 Address Command 'PRINT' file /* Print the log file. */
 Address Command 'ERASE' file /* Erase the log file. */

 End

diskslow is used in this case because it does not block its output, but instead writes out every
record immediately. Every fifth record passed to diskslow here is subsequently turned into a
FINIS command that is issued by the command stage, thus checkpointing the log file frequently.
(Obviously, one should avoid random FINISes if the server has other files open, as this stage runs
concurrently with the rest of the pipeline.)



Building Piped Servers Page 9
———————————————————————————————————————

 VI. TRIGGERING MULTIPLE EVENTS

In a complex pipeline, you may sometimes find it useful to let a single record trigger multiple
events. In this example, which carries that idea to the extreme, when the user types a “STOP”
command on the virtual machine console, it triggers events all over the pipeline:

 'CALLPIPE',
 'immcmd STOP |', /* Have we got a STOP command? */
 'o: fanout |', /* Yes, make multiple copies. */
 'spec', /* Make this one pretty. */
 '/ Console command is:/ 1',
 '1-* nextword |',
 'timestamp 16 |' /* Prefix date and time. */
 '*.output.1:', /* Send it to the log file. */
 '?',
 'o: |', /* Second copy to here. */
 'pipestop', /* Use it to stop externals. */
 '?',
 'o: |', /* Third copy to here. */
 'l: find RELOAD|', /* Is it STOP RELOAD? */
 'spec /1/ |', /* Yes, make Boolean. */
 'f: faninany |', /* Collect Boolean value. */
 'var reload 1 tracking |', /* Store in caller. */
 'find 1|', /* Was it CMD STOP RELOAD? */
 'spec /EXEC PROFILE/ |', /* Yes, make it "EXEC PROFILE".*/
 'stack', /* Stack that command. */
 '?',
 'l: |', /* Not STOP RELOAD. */
 'spec /0/ |', /* Make Boolean. */
 'f:', /* Send it into FANINANY. */
 '?',
 'o: |', /* Fourth copy to here. */
 '*.output.0:' /* Feed into the GATE stage. */

When the immcmd stage receives a record, fanout makes four copies. The first is garnished and
time-stamped and written to the secondary output stream of the stage that issued the callpipe; that
stream is connected to the input of a logging stage much like the one in the previous example.
The second copy of the record is written to a pipestop stage, thus terminating all stages
throughout the pipeline complex that are waiting on external events. The third copy is examined
to see whether the user specified the RELOAD option. If he did, that record is transformed into
the numeral “1”; otherwise, it is transformed into a “0”. The numeral record is passed to a var
tracking stage, which stores it as a Boolean variable in the caller’s REXX environment. If the
value is “1”, it is then turned into an EXEC PROFILE command, which is stacked in the CMS
stack to start the server up afresh after it has stopped. The fourth copy is written to this stage’s
primary output stream, which is connected to the primary input of a gate stage; that causes gate
to terminate, which will terminate other portions of the pipeline. (For a discussion of gate and
other aspects of pipeline termination, see Appendix D in my handout.)



Page 10 Building Piped Servers
———————————————————————————————————————

 VII. SYNCHRONISE

synchronise is used to force records on parallel streams of a pipeline to march through that
pipeline in unison. synchronise waits until it has a record on each of its input streams and then
copies those records to the corresponding output streams. It is especially useful for throttling
back a stage, such as duplicate *, that can produce an infinite number of records. In this example,
it is used to synchronise the processing of records with external events; one record is read from
the calling pipeline and written back to it each time an SMSG is received:

 /* PACER REXX: Use external events to pace record processing */

 'CALLPIPE (endchar ?)',
 '*.input: |', /* Input from caller. */
 'sync: synchronise |', /* Correlate with SMSGes. */
 '*.output:', /* Output to caller. */
 '?',
 'starmsg CP SET SMSG IUCV |', /* Capture SMSGes. */
 'sync: |', /* Synchronize with input. */
 'hole' /* Into the bit bucket. */

 saverc = RC
 Address Command 'CP SET SMSG OFF' /* Back to normal. */
 Exit saverc*(saverc<>12) /* RC = 0 if end-of-file. */

Only when the starmsg stage has captured an SMSG and has made it available on the secondary
input stream of the synchronise stage does synchronise process the next record from its primary
input stream. Then one record is read from each stream and copied to the corresponding output
stream. Since synchronise’s primary output stream is connected to the calling pipeline and its
secondary output stream is connected to a hole stage, the record from the calling pipeline is
passed back to the calling pipeline and the SMSGed record is discarded. Then no further records
are processed until the next SMSG is received. This subroutine pipeline runs until synchronise
encounters an end-of-file on any input or output stream. (That is the reason for the hole stage.
The records on synchronise’s secondary output stream are not needed by this application, but that
stream must remain connected to prevent synchronise from terminating too soon.)

 VIII. CONTROLLING A RUN-AWAY PROCESS

If your service machine must invoke unreliable programs, you may need a way of controlling
those programs when they get into trouble. I have a set of service machines that perform FTPs by
AUTOLOGing “robot” virtual machines and using the Single Console Image Facility (SCIF) to
control them. A REXX filter sends FTP commands and subcommands to a robot:

 Address Command 'CP SEND' parm.myrobot Arg(1)

Responses are captured by a starmsg stage and passed to the REXX filter on its secondary input
stream, where they are examined for too many Pascal error messages:



Building Piped Servers Page 11
———————————————————————————————————————

 /*-------------------------------------------------------------*/
 /* Process the SCIF messages until a CMS prompt is received; */
 /* then disconnect from pipeline with messages stored and */
 /* "ftprc" set. */
 /* */
 /* The CMS prompt is a message such as: */
 /* User BITFTP5R has issued a VM read */
 /* */
 /* The "console" stage here must come after the reference to */
 /* the "gate" stage, because "console" does not propagate end- */
 /* of-file backwards. Selection stages that divert records */
 /* to the "gate" stage must come before it to avoid a stall. */
 /*-------------------------------------------------------------*/

 'CALLPIPE (endchar ? listerr name SendRobot)',
 'y: faninany |', /* Get primary input for GATE. */
 'console |', /* Display response. */
 'drop 9 |', /* Ignore until get 10th AMPX. */
 'take 1 |', /* That one is enough. */
 'count lines |', /* Make it Boolean. */
 'var gotampx |', /* And set logical variable. */
 'find 1|', /* Drive GATE only if true. */
 'g: gate strict' /* Force EOF on secondary. */
 '?',
 '*.input.1: |', /* Connect to secondary input. */
 'tolabel' has_issued'|', /* Continue until CMS prompt. */
 'find 00000008|', /* Select only SCIF output. */
 'spec 17-* 1 |', /* Discard message header. */
 'spec w2-* 1 |', /* Discard robot's name. */
 'nfind Command:|', /* Discard FTP prompt. */
 'stem result. |', /* Save FTP responses. */
 'x: nfind AMPX|', /* Divert Pascal error message.*/
 'g: |', /* Run through gateway. */
 'console |', /* Display response. */
 findrc, /* Set the FTP return code. */
 '? x: | y:' /* AMPX message to GATE pipe. */

 /*-------------------------------------------------------------*/
 /* If the number of AMPXnnn messages for this job is greater */
 /* than 10, we are probably going to get a zillion of them, */
 /* so bail out as quickly as we can. */
 /*-------------------------------------------------------------*/

 If gotampx Then Do /* If more than 10, serious. */
 Address Command 'CP CHANGE * RDR' spoolid 'CLASS X'
 Call ToMWV /* Transfer the file away. */
 Address Command 'CP SEND CP' parm.myrobot 'IPL CMS PARM AUTOCR'
 Signal Restart /* Restart robot and self. */
 End



Page 12 Building Piped Servers
———————————————————————————————————————

The SCIF messages enter the second pipeline segment. Under normal circumstances, the
subroutine pipeline accepts all the SCIF messages until the tolabel stage encounters a CMS
prompt, which indicates completion of the command that was sent to the robot. The response
lines are winnowed down to the useful bits and stored in the RESULT. stem before this callpipe
command completes.

Any Pascal error messages encountered among the SCIF responses are diverted to the first
pipeline segment, where they are counted. When the tenth one arrives, the Boolean variable
“gotampx” is set to “true”, and a record is written to the primary input of gate, causing it to
terminate. When gate terminates, end-of-file propagates forward from its secondary output and
backward from its secondary input, causing the entire subroutine pipeline to terminate
immediately. The variable “gotampx” can then be examined and appropriate actions taken.

 IX. ADDPIPE

addpipe can make your complex servers much less complex. Appendix E in my handout includes
a general introduction to addpipe, so I will just mention briefly some of the advantages of
learning to use addpipe.

One good thing you can do with addpipe is prefix or suffix sections of pipeline to a REXX filter.
The reason for doing this is to hide complexity. Here is an addpipe issued by a REXX filter in a
screen-scraper application, a service machine that intervenes between MVS/ESA and VM
Programmable Operator:

 'ADDPIPE (endchar ?)', /* Suffixed pipeline. */
 '*.output: |', /* Get output from this stage.*/
 'l: locate 1600 |', /* MVS init writes 1600-byte..*/
 'nlocate 1601 |', /* ..blocks to screen. */
 'deblock 80 |', /* Deblock to lines. */
 'f: faninany |',
 'xlate 2.2 0-9 40 |', /* Blank outstanding reply. */
 'change 3-4 /||/ / |', /* Remove replied signal. */
 'nfind _IEE163I_MODE=_R |', /* Discard noise from bottom. */
 'strip trailing |', /* Remove blank lines. */
 'locate 1 |',
 'pad 80 |', /* Make all lines same size. */
 '*.output:', /* Output to stage's output. */
 '?',
 'l: |',
 'locate 79 |', /* Rest of MVS writes... */
 'nlocate 80 |', /* ..79-byte blocks. */
 'f:'

The REXX filter that issues this addpipe interprets the orders in a 3270 datastream and writes
reformatted data to its output. Because this addpipe is suffixed to its output stream, additional
cleanup is done as the records leave the REXX filter. Full screens are deblocked to lines,



Building Piped Servers Page 13
———————————————————————————————————————

miscellaneous squiggles are erased, and uninteresting lines are discarded. The same operations
could have been done in REXX or by a callpipe in the filter itself, but either of those would have
been more expensive. The same stages could have been inserted into the main pipeline after this
REXX filter, but that would have increased the apparent complexity of the main pipeline. The
function these stages perform is logically part of this REXX filter, so it is better to hide them in
the filter.

Another good reason to use addpipe in a server is that it can allow you to spawn a separate
operation for each request that the server receives. addpipe runs asynchronously with the stage
that issues it, so control is returned as soon as the new pipeline has been created. If your pipeline
does nothing that causes Pipes to lose control for long periods, you can get the appearance of
multi-tasking very easily and allow short requests to be processed while longer tasks are still
running. The paper by Rob van der Heij that is included among our handouts gives an elegant
example of doing just that.

 X. REXX PIPELINE COMMAND

If you find yourself writing very large REXX filters for your server and want a way to make your
code more modular, you should be aware that you can use the REXX pipeline command to
invoke a REXX program from your REXX filter. Using the pipeline command REXX in a
REXX filter is equivalent to calling an external function in a REXX command procedure. It can
also be a handy way of invoking user exits:

 Address Command 'STATE BFUSER1 REXX *' /* User exit provided? */
 If RC = 0 Then /* Yes, invoke user exit. */
 'REXX bfuser1' Uid Unode spoolid

The called program has access to the streams belonging to the filter that invoked it. It can also
use the REXX device drivers in subroutine pipelines to manipulate REXX variables in the filter
that invoked it.

 XI. PERFORMANCE ANALYSIS

After I had written a few servers that made heavy use of CMS Pipelines, I found it necessary to
write a pipeline execution profiler, so that I could improve the performance of those servers. This
program, which is named Rita, is available on VMSHARE and on the 1994 VM Workshop Tools
Tape. It is quite easy to use; you simply change a PIPE command to RITA and run your
program. When your program terminates, Rita will produce a report showing the CPU utilization
of every pipeline stage. That should allow you to spot the areas that will most benefit from
attention.



Page 14 Another Small Example
———————————————————————————————————————

 Appendix A

 ANOTHER SMALL EXAMPLE

This is a small service machine implemented in Pipes that illustrates the use of delay, starmsg,
immcmd, and PIPMOD STOP. The guts of the server are hidden in a single subroutine called
getcmd:

 /* GETCMD REXX: Feed requests to higher level of the server */

 primer = '00000004* RDR FILE **** FROM' /* Constant. */

 'CALLPIPE (endchar ?)',
 '| immcmd CMD', /* Immediate commands. */
 '| spec /00000004*/ 1.16 1-* next', /* As if SMSG from self. */
 '| f: faninany', /* Join all commands. */
 '| *:', /* Pass to caller. */
 '? starmsg', /* Listen for SMSGes. */
 '| f:', /* Pass to caller. */
 '? literal' primer 'startup', /* Prime the pipeline. */
 '| f:', /* Pass to caller. */
 '? delaycmd', /* Timer-driven retries. */
 '| f:', /* Pass to caller. */
 '? immcmd CP', /* CP immediate command. */
 '| cp', /* Pass to CP. */
 '? immcmd STOP', /* STOP command. */
 '| spec /PIPMOD STOP/', /* Build PIPMOD STOP. */
 '| subcom cms' /* Pass to CMS. */

getcmd receives all kinds of input:

• Commands typed on the virtual machine console are trapped by the immcmd stages. If a
 STOP command is typed, then a PIPMOD STOP command is given to CMS to stop the stages
 in the pipeline that are waiting on external events and timers. If a CP command is typed, then
 it is given to CP. If a command intended for the server (prefaced by “CMD”) is typed, then it
 is sent through the faninany stage and the connector into the calling pipeline.

• Commands SMSGed from other virtual machines are received by the starmsg stage and are
 also fanned in and sent through the connector to the calling pipeline.

• Messages generated by the arrival of spool files are trapped by the same starmsg (all classes
 of messages have been set to IUCV), so they also go to the calling pipeline.

• A literal stage fires once when the pipeline is first invoked. This sends a “primer” line into the
 calling pipeline to get it to start processing.



Another Small Example Page 15
———————————————————————————————————————

• Timer interrupts are generated by a subroutine called delaycmd, which feeds a line into
 getcmd each time it has done something for which the main (calling) pipeline should be
 wakened. (getcmd fans those lines in and sends them through the connector to the caller, just
 as it does with everything else.)

Here’s a portion of delaycmd:

 'CALLPIPE (endchar ?)',
 ' literal 47:00:00', /* 11pm tomorrow. */
 '| duplicate *', /* Forever. */
 '| literal 23:00:00', /* 11pm today (or now). */
 '| delay',
 '| spec /CHANGE RDR CLASS K NOHOLD/',
 '| cp', /* Release Class K files.*/
 '| nlocate /NO/', /* Forget it if no files.*/
 '| spec /'primer'/ 1 / class k delay/ next' /* Fake arrival. */
 '| f: faninany', /* Join all messages. */
 '| *:', /* Pass to GETCMD. */
 '? literal +240:00', /* Four-hour interval. */
 '| duplicate *',
 '| delay',
 '| spec /CHANGE RDR CLASS J NOHOLD/',
 '| cp', /* Release Class J files.*/
 '| nlocate /NO/', /* Forget it if no files.*/
 '| spec /'primer'/ 1 / class j delay/ next', /* Fake arrival. */
 '| f:' /* Pass to GETCMD. */
 . . .

Thus, the main pipeline starts out by invoking getcmd:

 'PIPE (endchar ?)',
 'getcmd |', /* Wait for something to do. */
 . . . /* Process requests. */

All its input comes from getcmd, arriving in whatever order the various events (reader files,
console commands, timer-driven events, SMSGed commands) occur and whenever they occur.
The rest of the pipeline is simply an extensive decoding network that looks at the single record
received from getcmd for each event and decides what action to take in that case.



Page 16 Requesting Authentication
———————————————————————————————————————

 Appendix B

 REQUESTING PERMISSION OR AUTHENTICATION

One of our service machines is actually a complex of several virtual machines. A central driver
dispatches work to a group of identical servers. There is a limit on the amount of data this
complex will send to a given user each day, so the driver machine keeps track of the total number
of bytes sent to each user by the servers. When a server is ready to begin processing a request for
a user, it asks permission to proceed by sending a CP message to the driver:

 beginmsg = ' Begin job for' mailto /* Message for driver. */

 'CALLPIPE (name SendBeg)', /* Tell driver beginning: */
 'var beginmsg |', /* Load in BEGINMSG. */
 'timestamp 16 |', /* Time-stamp it. */
 'change //MSG' parm.driver 'STATS: / |', /* Format command. */
 'cp' /* Issue MSG command. */

It then invokes another subroutine pipeline to wait for the response from the driver. A starmsg
stage elsewhere in the pipeline captures the response from the server and feeds it into the stage’s
tertiary input. If the driver doesn’t reply within 30 seconds, the server proceeds without waiting
further. If the driver does respond, its response is split into three words, which are stored in a
stem for further examination:

 'CALLPIPE (endchar ? name Proceed)', /* Get driver's response: */
 '*.input.2: |', /* Will come on tertiary input.*/
 'f: faninany |', /* Either that or a timer pop. */
 'take 1 |', /* Need only one record. */
 'locate 1 |', /* Discard if it's null. */
 'split |', /* Split to get three values. */
 'stem proceed.', /* Store in stem. */
 '?',
 'literal +30|', /* Thirty seconds. */
 'delay |', /* Wait that long. */
 'change /+30// |', /* Make record null. */
 'f:' /* Send to faninany. */

After the server has completed a request, it sends a similar message to the driver to tell it how
many bytes of data were sent to the user. starmsg captures the messages from the servers, and at
midnight, a subroutine in the driver (shown at the bottom of page 7) simulates a message to cause
the usage counts to be reset. The driver’s code to process these messages is quite simple; the
messages are fed into a REXX filter, the central portion of which is shown here:



Requesting Authentication Page 17
———————————————————————————————————————

 /*---------------------------------------------------------------*/
 /* Loop forever processing server messages as they arrive. */
 /*---------------------------------------------------------------*/

 count. = 0 /* Initialize usage. */

 Do Forever
 'PEEKTO message' /* Wait for a message. */
 Parse Upper Var message caller . . function .

 Select
 When function == 'CLEANUP' /* It's midnight. */
 Then Do /* All is forgiven. */
 Drop count. /* Drop the stem. */
 count. = 0 /* Reinitialize it. */
 End
 When function == 'BEGIN' /* Starting a request. */
 Then Do
 Parse Upper Var message . . . . . . mailto
 bytes = 0 /* No data sent yet. */
 Call Permission /* Send STATRESP to caller.*/
 End
 Otherwise /* Completing a request. */
 Parse Upper Var message . . . bytes . . . . mailto
 Call Permission /* Send STATRESP to caller.*/
 End

 'OUTPUT' message /* Write message to log. */
 'READTO' /* Unblock producer. */
 End

 Error: Exit RC*(RC<>12) /* RC = 0 if end-of-file. */

 /*---------------------------------------------------------------*/
 /* Permission Subroutine */
 /*---------------------------------------------------------------*/

 Permission: /* Record usage and reply. */

 count.mailto = count.mailto + bytes /* Increment counter. */

 response = (count.mailto < parm.rscsdaily), /* Set values. */
 (count.mailto < parm.maildaily),
 (count.mailto < parm.uucpdaily)

 Address Command 'CP MSG' caller 'STATRESP' response

 Return



Page 18 On Record Delay
———————————————————————————————————————

 Appendix C

 ON RECORD DELAY AND PIPELINE STALLS

When writing service machines, it can be very useful to know how to reason about the flow of
records passing through multi-stream pipelines, such as the one below. A “splitter” stage writes
records to two or more output streams; later in the pipeline, a “joiner” stage reads records from
those same streams:

 +----------+ +------+ +------+ +----------+
 | |----| |----| |----| |
 | | +------+ +------+ | |
 ---| splitter | | joiner |---
 | | +------+ | |
 | |----------| |----------| |
 +----------+ +------+ +----------+

When any stage writes an output record, it remains “blocked” until that record has been
“consumed” by the stage connected to its output stream. That is, it does not regain control until
after the record has been read with the equivalent of the pipeline command readto. However,
most pipeline stages do not consume a record when they first read it. They first read the record
with the equivalent of a peekto command, which does not consume it. They do not consume the
record until after they have written it to their own output stream and it has been consumed by the
stage to which they wrote it. (Stages that process records in this way are said not to “delay the
record”.) Thus, when splitter stages, such as locate, drop, fanout, and others, write a record on
one output stream, they must then wait until that record has been consumed before they can write
another record to any of their output streams.

If all the stages in the multi-stream portions of a pipeline like the one shown above are of the sort
that do not delay the record, each of them passes the record along without consuming it until after
each of the subsequent stages has consumed it. Ultimately, then, this splitter stage must wait for
the joiner stage to consume each record before the splitter can write the next one. If the joiner
stage cannot consume a record that the splitter stage has written, the pipeline stalls.

If the joiner stage is faninany, then this configuration will never stall, because faninany always
reads any record that is available on any of its input streams. Other joiner stages are more
exacting, however. Some, such as spec and synchronise, wait until they have a record available
on each of their input streams before they consume any of them and then consume them in
stream-number order. Others, such as collate and merge, wait until they have a record available
on each of their input streams and then choose which one to consume based on the contents of the
records. fanin is the most extreme; it consumes all the records from one input stream before it
will read any records from any other input stream.

A further complication is that a stage in the multi-stream portion of a pipeline may “buffer” the
records; that is, some stages, such as sort and instore, consume all their input records before
writing any output records and, thus, may keep the joiner stage waiting for records on one of its
input streams.



On Record Delay Page 19
———————————————————————————————————————

So, in a pipeline where there is a stage that reunites streams that originated in a single stage
earlier in the pipeline, there is a potential for pipeline stalls. The splitter stage may try to write
onto one stream while the joiner stage is trying to read from another stream. When that happens,
the pipeline stalls.

To prevent stalls, one inserts between the splitter and joiner stages (on one or more of the
streams) a pipeline stage that will unblock the splitter stage by consuming the necessary number
of records and holding them until the joiner stage is ready to read them.

The number of records that need to be “buffered” in this way varies. In the case with the least
requirement for such buffering, the splitter stage writes a record to each of its output streams in
rotation; the joiner stage reads records in stream-number order; and none of the intermediate
stages delays the records. In this case, the flow of the records is not data-dependent, and a stall
can be prevented simply by introducing a quantum delay on the low-numbered stream(s), using a
copy stage:

 +----------+ +------+ +----------+
 | |----| copy |----| |
 | | +------+ | |
 ---| chop | | spec |---
 | | +------+ | |
 | |----| |----| |
 +----------+ +------+ +----------+

copy is a very simple stage consisting of a loop containing readto and output commands. It does
a consuming read to get a record and then copies that record to its output stream. So, the copy
stage here consumes the record that chop writes to its primary output stream, freeing chop to
write a record to its secondary output stream. Meanwhile, copy writes the first record to its
output stream. As a result, spec then finds records available on both of its input streams and
consumes them both, freeing chop to write to its primary output stream again and freeing copy to
read from that stream again.

At the other extreme in the amount of buffering required is the case where the joiner stage is
fanin. Because fanin will read no records from its secondary stream until its has read all the
records from its primary stream, one must introduce a stage such as buffer to consume all records
on the secondary stream and hold them until fanin is ready for them:

 +----------+ +--------+ +----------+
 | |---| |---| |
 | | +--------+ | |
 ---| chop | | fanin |---
 | | +--------+ | |
 | |---| buffer |---| |
 +----------+ +--------+ +----------+



Page 20 On Record Delay
———————————————————————————————————————

Otherwise, the splitter stage would become blocked trying to write the first record to fanin’s
secondary input.

The same requirement to insert a stage to buffer all the records on a stream may arise because one
of the other streams contains a stage, such as sort, that buffers all the records:

 +----------+ +------+ +----------+
 | |----| sort |----| |
 | | +------+ | |
 ---| chop | | spec |---
 | | +--------+ | |
 | |---| buffer |---| |
 +----------+ +--------+ +----------+

In the intermediate case, one or more of the streams may need some buffering of records,
depending on the order in which the splitter stage decides to write and the order in which the
joiner stage decides to read. This is a job for elastic:

 +--------+ +-------+ +---------+
 | |-------|elastic|--------| |
 +----+ | | +-------+ | | +----+
 --|spec|---| fanout | | collate |---|spec|--
 +----+ | | +-----+ +------+ | | +----+
 | |---|xlate|---|locate|---| |
 +--------+ +-----+ +------+ +---------+

When elastic has only one input stream, as in this case, it copies its input records to its output,
buffering as many as may be necessary to prevent a pipeline stall. It reads input records
whenever they become available and writes output records as they are consumed, while
attempting to minimize the number of records in its buffer.

In general, one can use elastic wherever buffering is needed to prevent a stall. However, if one
knows that only a quantum delay is needed, then copy is more efficient than elastic, while if one
knows that the entire file must be buffered, then buffer is more efficient than elastic. If the file
being processed is large, it may be worth doing the analysis to distinguish the cases.



On Pipeline Termination Page 21
———————————————————————————————————————

 Appendix D

 ON PIPELINE TERMINATION

In the simplest case, a pipeline consists of an input device driver, a few stages to manipulate the
data, and an output device driver, and termination of such a pipeline is usually very
straightforward. The input device driver reaches end-of-file on the device it is reading from and
terminates. Its termination severs its output stream, causing the stage that was waiting to read
from that stream to get an end-of-file on its input. That stage has nothing more to do, so it also
terminates, causing its output stream to be severed and the next stage to receive end-of-file on its
input. Very quickly, the entire pipeline collapses in domino fashion, with each stage getting a
chance to do any end-of-file processing it may need to do before it terminates.

The first bit of complication that may arise is that one of the stages in the middle of the pipeline
may decide to terminate before the input device driver has reached end-of-file. This might be,
say, a take 5 stage. Once that stage has read five records and has copied them to its output
stream, it terminates, causing both its input stream and its output stream to be severed. That
causes the following stage to receive end-of-file on its input and to start the same domino
termination effect as before. But it also causes the preceding stage to receive end-of-file the next
time it tries to write an output record.

Many stages terminate “prematurely” when they receive end-of-file trying to write output. For
example, if the stage is an input device driver, there is no point in its continuing to read from its
device, if it has nowhere to write the records to, so it terminates. If the stage is a selection stage,
such as find or locate, and it had only the one output stream connected, then it, too, will terminate
when its output stream is severed. Again, it makes little sense to keep selecting records when no
other stage is available to read the selected records.

So, when our take 5 terminates, end-of-file may propagate all the way back to the beginning of
the pipeline, causing it to collapse as before, but with the dominoes falling from the middle
toward both ends, rather than from beginning to end.

On the other hand, some stages do not terminate when they receive end-of-file on their output
stream. For example, the host command processors, such as cp and cms, keep on issuing
commands, and the output device drivers continue writing to their devices, even though they no
longer have a connected output stream. They can still do useful work without being able to write
to the pipeline, so there is no reason for them to stop. By the same logic, selection stages do not
terminate when one output stream is severed, if the other output stream is still connected.

Thus, end-of-file may not propagate backwards in the pipeline through a branch or through
certain stages. And this is certainly the way one would want things to work—segments of the
pipeline that still have useful work to do keep on going, even though other segments may have
completed. When their work is done, they, too, terminate.

However, this may sometimes produce results that are at first glance surprising. In the pipeline in
the middle of page 7, for example, it is safe to insert a console stage after the take 1 stage, but not
before it. If console comes before take 1, end-of-file will not propagate backwards through the
console stage when take terminates, so something more drastic, such as a PIPMOD STOP
command, will be required to terminate the delay and immcmd stages, which otherwise terminate
only if their output streams are severed.



Page 22 On Pipeline Termination
———————————————————————————————————————

How a stage behaves when its output is severed is well documented in the author’s help files;
each of the relevant stages has a section entitled “Premature Termination”. A stage’s behavior in
this respect is generally the same as that of all the other stages in its class and is generally what
one would expect.

There are, not surprisingly, a few cases in which what one expects may vary with the
circumstances. That is the reason the new stop option was added to fanout to allow the user to
specify the number of output streams that must reach end-of-file before fanout will terminate.
The default is for it to continue running until all of its output streams have reached end-of-file
(unless, of course, its input stream is severed), but now one can force it to terminate when, say,
only one of its output streams has reached end-of-file.

Typically, the built-in stages terminate when their input streams are severed, so in general
end-of-file easily propagates forward as the input stream of each stage is severed, even though the
pipeline may branch. However, stages that have multiple input streams may or may not terminate
when just one of their input streams is severed. synchronise, for example, terminates when any
one of its streams is severed, but spec, on the other hand, continues running until all of its input
streams are severed. For the most part, these behaviors are what one would wish. However,
spec, too, has been enhanced to have a stop option to specify how many of its input streams must
be at end-of-file before it will stop.

There is a set of input device drivers that never receive an end-of-file indication. These are the
stages that take their input from external events or processes for which no end is defined. For
example, immcmd accepts console commands and starmsg receives messages via IUCV. The
delay stage, which waits for a timer expiration, is similar, although not an input device driver.
All of the stages that wait on external events can be terminated by use of the PIPMOD STOP
immediate command. PIPMOD STOP is not selective; it terminates every delay, immcmd,
starmon, starmsg, starsys, and udp stage in the entire pipeline set. This is reasonable, as often
one wishes everything to terminate once any one of several possible events occurs.

Another of the recent enhancements to Pipes is the addition of the pipestop stage. As soon as
pipestop receives an input record, it performs the same function as PIPMOD STOP; that is, it
posts all of the ECBs that are being waited on by other stages.

Some of the stages that can be stopped by PIPMOD STOP and pipestop can also be stopped by
their own private immediate commands, which stop only the stage in question. For example, the
HACCOUNT immediate command stops only a starsys *account stage. Using the immcmd
stage, one has the ability to create other immediate commands to signal a single user-written stage
to terminate. Armed with the appropriate immediate commands and the new gate stage, one can
disassemble a complex pipeline much more gracefully than by using PIPMOD STOP.

In general, terminating a pipeline in an orderly fashion gets to be something one needs to think
about only when the pipeline becomes rather complex and has more than one stage waiting on
external events. Then it may become a satisfyingly intricate process, somewhat akin to designing
fjords. For this reason, I was grateful for the addition of gate (which is included in CMS 10 but
not documented until CMS 11).



On Pipeline Termination Page 23
———————————————————————————————————————

 'PIPE (endchar ?)', /* Using GATE to terminate: */
 'immcmd CMD|', /* Capture immediate commands. */
 'd: doimmcmd |', /* Analyze and process them. */
 'f: faninany |', /* Gather records for log file.*/
 'logger', /* Manage the log files. */
 '?',
 'd: |', /* DOIMMCMD's STOP signal. */
 'g: gate strict', /* Terminate when get signal. */
 '?',
 'starmsg |', /* Connect to CP *MSG service. */
 'u: nfind 00000001|', /* Divert user messages. */
 's: find 00000007|', /* Divert SCIF; keep IMSGes. */
 'doimsg |', /* Select interesting IMSGes. */
 'g: |', /* Run through gateway. */
 'elastic |', /* Buffer a few IMSG records. */
 'b: bitftp |', /* Run the FTP requests. */
 'f:', /* Write them to the log file. */
 '?',
 's: |', /* SCIF messages to here. */
 'elastic |', /* Buffering needed here, too. */
 'b:', /* Into BITFTP's 2ry input. */
 '?',
 'u: |', /* User messages to here. */
 'domsg |', /* Respond to user queries. */
 'f:' /* Write to the log file. */

 +------+ +-----+ +---+ +---+
 |immcmd|--|doimm|--------------------------------------| |--| l |
 +------+ | cmd |----------+ +---+ | f | | o |
 +-----+ | +----+ | b | | a | | g |
 +----+ +-----+ +----+ +-|gate| +-------+ | i | | n | | g |
 |star|--|nfind|----|find|----| |--|elastic|--| t |--| i | | e |
 |msg | | MSG |-+ |IMSG|-+ +----+ +-------+ | f | | n | | r |
 +----+ +-----+ | +----+ | +-------+ | t | | a | +---+
 | +----------|elastic|--| p | | n |
 | +-----+ +-------+ +---+ | y |
 +-|domsg|------------------------------| |
 +-----+ +---+

The purpose of gate is to spread end-of-file in a delicate manner. gate terminates when it reads a
record on its primary input stream; until then, records it reads on other streams are simply copied
to the corresponding output stream. When the option strict is specified, gate checks the state of
its primary input stream each time it is ready to copy a record to another output stream; when
strict is omitted, gate stops the next time its primary input stream is selected.



Page 24 On Pipeline Termination
———————————————————————————————————————

The example shown on the preceding page illustrates the use of gate. This is the central routine
of a service machine. It has two input stages, immcmd and starmsg. starmsg receives three kinds
of messages: user messages, which are processed by the domsg stage, CP information messages,
which form the primary input of the bitftp stage, and SCIF (secondary console interface)
messages, which form the secondary input of the bitftp stage. One of the immediate commands
that this pipeline accepts is STOP, but the familiar practice of turning that immediate command
into a PIPMOD STOP command and issuing that to terminate the pipeline will not do in this case.
The bitftp stage may be running a transaction that should be allowed to complete before the
pipeline terminates. If a PIPMOD STOP command were issued, the starmsg stage would be
terminated. That would mean that the bitftp stage could receive no more SCIF messages. It
would, therefore, be unable to complete its transaction, which involves driving a process in
another virtual machine. In fact, the bitftp stage would be unable to complete its transaction if
starmsg, nfind, find, or the second elastic stage were terminated, because they form the path
through which it receives the SCIF messages. Furthermore, it would be unable to log its
transaction if the faninany or logger stages were terminated too soon.

However, by using gate, one can arrange things so that pulling the plug on this pipeline is no
problem. When the doimmcmd stage receives a STOP command from the immcmd stage, it first
writes a message to the logger stage (via the faninany stage), then sends a record to the gate stage
on gate’s primary input stream, and finally terminates. Its termination causes the immcmd stage
to terminate, because (like most other input device drivers) immcmd terminates when its output
stream has been severed. When gate receives the record from doimmcmd on its primary input
stream, it also terminates, which severs its other input stream and its output stream. The severing
of its output stream causes the elastic stage that had been connected to that stream also to
terminate, severing its connection to the primary input of the bitftp stage. The fact that gate’s
secondary input stream has been severed does not affect the find stage, whose primary output was
connected to that stream; find still has its secondary output connected, so it continues to run.
Similarly, faninany continues to run despite the severing of its primary input stream when the
doimmcmd stage terminated.

The remaining stages continue to run while bitftp finishes its transaction. It then reads from its
primary input stream to get an IMSG describing its next transaction. When it discovers that its
primary input has been severed, it issues a PIPMOD STOP command, which terminates the
starmsg stage, starting a domino effect that results in the termination of nfind, find, elastic, and
domsg, but leaves faninany running, because it still has an input stream connected. bitftp then
terminates itself, resulting in the termination of faninany and finally logger (but not until after
logger has logged the final messages from all the other stages).



On Addpipe Page 25
———————————————————————————————————————

 Appendix E

 ON ADDPIPE

The addpipe command is used to add one or more pipelines to the set of running pipelines and
allow the stage that issued the addpipe to continue to execute in parallel with the newly added
pipelines.1

When the addpipe command is invoked to add a new pipeline, the resulting changes in pipeline
topology may include the breaking of connections between the invoking stage and other stages.
A stream connected to a stage that issues an addpipe will be disconnected from that stage if it is
referenced by a connector in the new pipeline.

What happens to the disconnected stream depends on the configuration of the connector that
references it:

• It may become permanently connected to the new pipeline and have no further connection to
 the stage that invoked addpipe.
• It may be suspended while another stream temporarily occupies its connection to the stage that
 invoked addpipe.
• It may be connected to the new pipeline, which is in turn connected to the stage that invoked
 addpipe.

Thus, connectors may be specified in three possible configurations:

• A “redefine connector” detaches a stream from the stage that invoked addpipe and
 permanently attaches it to the new pipeline. A connector is a redefine connector when it is
 either:

 — An input connector at the beginning of a pipeline, or
 — An output connector at the end of a pipeline.

 This is an example of a redefine connector that transfers the invoking stage’s input stream to
 an added pipeline:

 addpipe *.input: | xlate upper | > output file a

 After this command is issued, the stage that issued it will get an end-of-file indication if it tries
 to read its input stream, because its input stream is no longer connected. The diverted input
 stream is processed by the new pipeline, which upper-cases the records as they pass through
 and then writes them to a file.

 The following pipeline, which has redefine connectors at both ends, is identical to a pipeline
 short operation:

————————————————————

1 This section represents an attempt to elaborate on the discussion of addpipe in the CMS
 Pipelines User’s Guide and Filter Reference (SL26-0018). It is heavily indebted to both that
 manual and the Toolsmith’s Guide (SL26-0020).



Page 26 On Addpipe
———————————————————————————————————————

 addpipe *.input: | *.output:

 The stage that issues this addpipe command transfers both its input stream and its output
 stream to the added pipeline (which connects them to one another).

• A “prefix connector” suspends a connection between the stage that invokes addpipe and
 another stage and replaces that connection with one between the new pipeline and the
 invoking stage. If it is an input connector, records flow from the added pipeline through the
 connector into the invoking stage’s input stream. If it is an output connector, records flow
 from the invoking stage’s output stream through the connector into the added pipeline. A
 connector is a prefix connector when it is either:

 — An input connector at the end of a pipeline, or
 — An output connector at the beginning of a pipeline.

 When a stream is connected to a new pipeline with a prefix connector, the old connection is
 saved on a stack. End-of-file on the new connection sets return code 12 for a readto, peekto,
 or output command issued by the invoking stage. A sever command can then be used to
 restore the stacked connection.

 Here is an example of a prefix connector that temporarily connects an added pipeline to the
 input stream of the invoking stage (for the purpose of allowing that stage to read a parameter
 file before beginning its main work):

 "ADDPIPE < parm file| *.input:" /* Connect input to parm file. */
 "NOCOMMIT" /* Disable automatic commit. */
 "READTO line" /* Read first line of file. */
 do while RC=0 /* Keep reading until EOF. */
 "READTO line"
 end
 "SEVER input" /* Re-instate input stream. */
 "COMMIT 0" /* See if other stages are OK. */
 if RC<>0 then exit 0 /* Exit quietly if not. */

 The addpipe command takes over the stage’s input stream and begins reading the parameter
 file into it. The readto commands that the stage subsequently issues get the parameter records
 that were put into its input stream by the added pipeline. After the stage has read the last of
 those records, its next readto gets a return code 12 (end-of-file), which causes it to exit from
 the Do While group. It then issues a sever command, which re-instates its original input
 stream, and a commit 0 command, which waits for the other stages to be ready for data to flow
 through the pipeline.

• “Hybrid connectors” cause a stream to flow through both the added pipeline and the stage that
 added the pipeline. A pipeline has hybrid connectors when it has either:

 — Input connectors at both ends, or
 — Output connectors at both ends.



On Addpipe Page 27
———————————————————————————————————————

 When the added pipeline has input connectors at both ends, the input stream for the stage
 flows through the added pipeline before it becomes available to the stage. For example, this
 addpipe command would cause the input records for the stage to be deblocked before being
 read by any readto commands in the stage:

 addpipe *.input: | deblock net | *.input:

 When the added pipeline has output connectors at both ends, the output stream from the stage
 flows through the added pipeline before flowing into another stage. For example, this addpipe
 command would cause any records produced by output commands in the invoking stage to be
 upper-cased before being passed to the next stage:

 addpipe *.output: | xlate upper | *.output:

A single stage may invoke the addpipe command more than once. When the added pipelines use
prefix or hybrid connectors, a given stream may be referenced repeatedly, resulting in stacking of
its connections.

Examples of using Addpipe

Addpipe with no connectors: A pipeline created by addpipe need have no connections to any of
the other pipelines in the pipeline set. It may simply run in parallel with the other pipelines
without data flowing between them. One way such an unconnected pipeline can be useful is in
monitoring long-running pipelines, such as service machines. For example, the following
addpipe might be used in a service machine that receives requests in the form of reader files:

 'ADDPIPE (name THI)', /* Timer-driven displays. */
 ' literal +1:00', /* Once a minute. */
 '| duplicate *', /* Forever. */
 '| delay', /* Wait for timer pop. */
 '| specs /QUERY FILES/ 1', /* Format Q FILES command. */
 '| cp', /* Give it to CP. */
 '| nlocate /NO RDR/', /* Be quiet if caught up. */
 '| specs', /* Format the display. */
 '/Backlog is:/ 1',
 '7.5 nextword',
 '/files./ nextword',
 '| console' /* Put it on the console. */

The added pipeline displays the backlog of requests once per minute, operating independently of
the pipelines that are processing the requests.

Addpipe with hybrid input connectors: This example of using addpipe with hybrid input
connectors is from Chuck Boeheim. It is a variant of the readlist stage discussed in the body of
the paper. The pipeline added by the addpipe command processes the input stream for this stage
before it is read by the readto command, converting each record into a traditional CMS “:READ”
card, which is later written to the output stream by the output command before the subroutine



Page 28 On Addpipe
———————————————————————————————————————

pipeline created by the callpipe writes the contents of the specified file to the output stream. Note
the use of lookup and the read keyword of spec:

 /* GETFDATE REXX: Send contents of files into the pipe */
 /* preceded by a :READ record bearing the */
 /* filename, disk label, and timestamp. */

 /* Input: filename; Output: ":READ" card followed by the file. */

 Signal On Error

 /* Add a subroutine pipe before this stage to put the filenames */
 /* into the format we need. */

 'AddPipe (endchar ?)' , /* Pre-process input stream.. */
 ' *.input:' , /* ..for this stage. */
 '| nfind *' || , /* Remove comments. */
 '| nfind &TRACE' || , /* And any control statement. */
 '| change /&1 &2 //' , /* Get rid of exec args. */
 '| change /&3 //' , /* Some lists have three. */
 '| state' , /* Ask CMS for the FST info. */
 '| disk: lookup 19.1 15.1' , /* Look up the disk info. */
 ' detail master' , /* */
 '| spec /:READ / 1' , /* Put :READ word in, */
 ' 1.20 8' , /* then the fileid, */
 ' 57.17 36' , /* then the timestamp; and */
 ' read' , /* from the next record, */
 ' 1.6 29' , /* get the disk label. */
 '| *.input:' , /* Connect to ourselves. */
 '?' ,
 ' cms query search' , /* Generate the disk table. */
 '| disk:' , /* and feed to lookup. */

 Do Forever /* Do until get EOF. */
 'READTO record' /* Get next input record. */
 'OUTPUT' record /* Write back to stream. */
 Parse Var record . fn ft fm . /* Break out file name. */

 'CALLPIPE', /* Invoke pipeline. */
 '<' fn ft fm '|', /* Put file into stream. */
 '*:' /* Connect into main pipe. */
 End

 Error: Exit RC*(RC<>12) /* RC = 0 if EOF */

Note also that the addpipe command is issued before the stage issues any input commands to read
from its input stream. This is required to establish the connection into the input stream before
data begin flowing on it. The same consideration applies to the example below of using hybrid



On Addpipe Page 29
———————————————————————————————————————

output connectors; the addpipe command must be issued before the stage issues any output
commands, if the added pipeline is to process all the output records.

Addpipe with hybrid output connectors: The following example of using addpipe with hybrid
output connectors is from Gregory DuBois, of SLAC. This addpipe command would be used in a
stage that produces very large binary records as its output. The user wishes to save the data in a
format that will later allow another pipeline to upload it with varload:

 'ADDPIPE (name GenVar long endchar ?)', /* Post-process output.. */
 ' *.output: |', /* ..stream from this stage. */
 ' fblock 64000 |', /* Form into 64,000-byte recs. */
 ' specs', /* Start making VARLOADable: */
 ' number 1', /* subscript in 1-10; */
 ' /:/ next', /* then delimiter (:); */
 ' 1-* next |', /* then the record. */
 ' strip leading |', /* Discard blanks in subscript. */
 ' change //:BINARY./ |', /* Prefix delimited stem name. */
 'c: count lines |', /* Record count to secondary. */
 'f: faninany |', /* All data recs plus BINARY.0. */
 ' *.output:', /* Output to next stage. */
 '?', /* End of first pipeline. */
 'c: |' , /* Record count to here. */
 ' strip |' , /* Deblank count for BINARY.0. */
 ' specs', /* Make it VARLOADable: */
 ' /:BINARY.0:/ 1', /* delimited name; */
 ' 1-* next |', /* then value. */
 'f:' /* Merge into output stream. */

A stage invokes this addpipe command to insert the GENVAR pipeline into its output stream with
hybrid connectors. Thus, the records that flow out of the invoking stage flow through GENVAR
before they get to the next stage. The output produced by the invoking stage is split into
64,000-byte records, and each record is prefixed by the string :BINARY.n:, where n is its record
number. The record count is put into another record of the form :BINARY.0:count, and all the
records are written to the output stream. Further on in the calling pipeline, these records might be
written to disk. Later, they could be read from disk and put through a varload stage, which would
store them as a stemmed array, making it convenient to use them for further computations.

Addpipe with prefix input connectors: The following example is from John Hartmann, the
author of CMS Pipelines. It is a REXX stage that uses a stack of addpipe commands with prefix
connections, restoring the stacked connections as its recursion winds down. The inclpack stage
processes an input stream containing a PACKAGE file, which lists the files to be distributed as
part of a software package. The files in the list may themselves be PACKAGE files, nested to
any depth. The lists are processed recursively to produce output records for all the files required
for the package. The PACKAGE file records have “ &1 &2 ” in columns 1-7 and a filename,
filetype, and filemode in the next 20 columns.



Page 30 On Addpipe
———————————————————————————————————————

 /* INCLPACK REXX: Include PACKAGE files recursively */
 Signal On Novalue

 Call Dofile /* Begin the recursion. */
 Exit /* Exit when done. */

 Dofile: Procedure
 Parse Arg stack /* Packages being done now. */

 Do Forever
 'READTO in' /* Next record from input. */
 If RC <> 0 Then Leave /* Leave if no more. */
 If Left(in,7) ¬== ' &1 &2 ' /* Comment record? */
 Then Iterate /* Yes, ignore. */
 'OUTPUT' in /* File record: to output. */
 Parse Var in . . fn ft fm .
 If ft <> 'PACKAGE' /* Iterate if not name of... */
 Then Iterate /* ...another PACKAGE file. */
 fid = fn'.'Left(fm,1) /* Iterate if this package... */
 If Find(stack, fid) > 0 /* ...already being processed. */
 Then Iterate
 'ADDPIPE <' fn ft fm '| *.input:' /* Add a pipe to put this...*/
 If RC <> 0 Then Exit RC /* ...PACKAGE file into input. */
 Call Dofile stack fid /* Process recursively. */
 'SEVER input' /* Restore previous stream. */
 End

 If RC = 12 Then Return /* Return on end-of-file. */
 Exit RC /* Otherwise exit. */

The Dofile procedure processes a PACKAGE file recursively. The argument to the procedure is a
list of the PACKAGE files already being processed, which is used to prevent a loop caused by a
package including itself (or including another package that in turn includes it).

The Do Forever loop reads a record and checks whether it names a file. If it does, the record is
copied to the output. If the record names a PACKAGE file, a check is made to determine
whether that PACKAGE file is among those currently being processed.

If the package is not being processed, then an addpipe command is used to inject the contents of
the PACKAGE file into the pipeline. As the added pipeline has a prefix connector that references
the stage’s input stream, the current input stream is saved on a stack of dormant input streams,
and the input stream for the stage is connected to the new pipeline, allowing its < stage to read the
PACKAGE file into the pipeline.

The Dofile procedure is called to process the new package. When it is done, the input stream
(which is now at end-of-file) is severed. That re-instates the stream on top of the dormant stack
to continue reading the most recently interrupted file. This process continues until all the input
streams have been processed and an output record has been written for every file required for the



On Addpipe Page 31
———————————————————————————————————————

package. (As there is nothing here to prevent a file from being named twice, there would
typically be a sort unique stage further on in the pipeline to discard duplicate records.)

Addpipe with hybrid input and output connectors: The following example is from Glenn
Knickerbocker, of IBM. It is a stage that is used to apply updates to several different files. The
input stream contains records suitable for use by a diskupdate stage, i.e., each record is preceded
by a 10-character field giving the number of the record it is to replace. There is an added wrinkle
here, however: in front of the record number in each input record is a 20-character field
containing the blank-delimited filename, filetype, and filemode of the file to be updated. This
stage uses addpipe to create a new pipeline for each file that is to be updated:2

 /* PUTFILES REXX */ /* Update specified files. */
 Signal On Error

 Do Forever /* Do until end-of-file. */

 'PEEKTO line' /* Examine next record. */
 Parse Var line fn ft fm . /* Extract file identifier. */
 findname = Translate(Left(line,20),'_',' ') /* Fill with _'s. */

 'ADDPIPE (end / name PutFiles)', /* Add a pipe for this file. */
 '| *.input:', /* Input from calling pipeline */
 , /* or other ADDPIPEs. */
 '| a: find' findname, /* Record for this file? */
 '| specs 21-* 1', /* Yes, remove name field. */
 '| diskupdate' fn ft fm, /* Update specified file. */
 '| b: faninany', /* Merge the two streams. */
 '| *.output:', /* Output to calling pipeline */
 , /* or other ADDPIPEs. */
 '/',
 ' a:', /* Updates for other files. */
 '| *.input:', /* Input to other ADDPIPEs in */
 , /* this stage (or PEEKTO). */
 '/',
 ' *.output:', /* Output from other ADDPIPEs */
 , /* in this stage. */
 '| b:' /* Go send to calling pipeline.*/

 End

 Error: Exit RC*(RC<>12) /* RC = 0 if end-of-file. */

————————————————————

2 A pipeline specification may have a stage separator between the global options and the first
 stage. This may be necessary to distinguish between global options and options that apply
 only to the first stage.



Page 32 On Addpipe
———————————————————————————————————————

The pipelines added by the addpipe command in this stage have the following topology:

 *.output:
 |
 V
 +----+ +-----+ +----------+ +--------+
 *.input: ->|find|--|specs|--|diskupdate|--|faninany|-> *.output:
 +----+ +-----+ +----------+ +--------+
 |
 V
 *.input:

A single pipeline of this topology can be very powerful. Because this pipeline begins and ends
with input connectors, it has a hybrid connection into the input stream for the stage that invoked
addpipe. This causes input records to flow through this pipeline before they can be seen by the
stage. Because this pipeline also begins and ends with output connectors, it also has a hybrid
connection into the output stream for the stage. This causes it to receive any output records from
the stage before they flow into the next stage. Having hybrid connectors at both ends gives this
pipeline the additional characteristic of being able to shunt records from the input for the stage to
the output for the stage without their being seen by the stage.

In this example, this concept is carried even further, because multiple pipelines of this topology
are created, one for each file to be updated. The result is “nested” hybrid connections on both the
input stream and the output stream.

When the stage starts, the peekto command examines the first record, and the addpipe creates a
pipeline for processing the file named in the first record. After that, the first added pipeline will
divert any records for its file before they can be seen by the peekto. The next record that gets
through to the peekto will be for another file, so addpipe will be used again to create a second
pipeline for processing records for that file. This process will continue until a pipeline has been
added for each of the files named in the input stream, after which the peekto will see no more
input records. Each pipeline will read its input stream and divert records for its file to its output
stream, while sending records for other files along its hybrid input connection, so that they can be
passed to the other added pipelines until eventually reaching the right one. Output from the
multiple added pipelines is similarly cascaded.

Addpipe with prefix input and output connectors: In the following example (from John
Hartmann), a stage that already has primary and secondary streams defined issues an addstream
pipeline command to establish tertiary input and output streams for itself:

 'ADDSTREAM BOTH' /* Define tertiary streams. */

It then issues an addpipe command to create a pipeline that will connect to those tertiary streams
using prefix connectors, with the stage’s output connected to the input of the added pipeline and
vice versa:



On Addpipe Page 33
———————————————————————————————————————

 'ADDPIPE (endchar ? name NodeSyn)',
 '*.output.2: |', /* Input from tertiary output. */
 'xlate |', /* Upper-case domain name. */
 'pad 49 |', /* Pad to full key. */
 'l: lookup 1.49 master |', /* Find matching RSCS nodename.*/
 'spec /+/ 1 50-* next |', /* Remember we got a match. */
 'f: faninany |', /* Join output streams. */
 '*.input.2:', /* Output to tertiary input. */
 '?',
 '< bitftp nodesyn |', /* Read in nodename synonyms. */
 'l: |', /* Non-matches come to here. */
 'change //-/ |', /* Remember didn't get match. */
 'f:' /* Route to FANINANY. */

This creates a permanent subroutine into which the stage can now and then throw a record and get
back a response. The advantage of this arrangement over repeatedly creating a similar pipeline
with callpipe is that the added pipeline is initiated only once; this might be a significant savings if,
for example, the master file being read by the lookup stage is large.

Once the added pipeline has been affixed to the invoking stage, the stage can send records into
the pipeline by writing on its tertiary output stream and can receive records from the pipeline by
reading from its tertiary input stream. A convenient way to do this might be to use a subroutine
pipeline such as the following:

 'CALLPIPE (endchar ? name GetSyn)',
 'var usernode |', /* Domain-style nodename. */
 '*.output.2:', /* Into the added pipeline. */
 '?',
 '*.input.2: |', /* From the added pipeline. */
 'take 1 |', /* Stop when get one record. */
 'find +|', /* Select for matches. */
 'change /+// |', /* Remove marker. */
 'var nodename' /* Set user's nodename. */

This inexpensive callpipe, which might be invoked repeatedly, writes one record to the added
pipeline, receives one record back, and then terminates, returning control to the stage that issued
both the addpipe and the callpipe.

For this scheme to work, the added pipeline must produce a known number of records from each
input record and must not delay the record. If the stage uses output to write to the added pipeline
and readto to read from it, then the added pipeline must have a one-record “elastic” (e.g., a copy
stage) to consume the record and thus allow the output to complete, so that the readto can be
issued. If the stage uses a subroutine pipeline to connect to the added pipeline, then the
subroutine pipeline must send an end-of-file out through both of its (redefine) connectors to the



Page 34 On Addpipe
———————————————————————————————————————

invoking stage, so that the stage’s connections to the added pipeline are restored when the
callpipe command completes.

How Addpipe Differs from Callpipe

addpipe is similar to the callpipe command in that they both add pipelines to the running set.
However, addpipe and callpipe differ from one another in several important ways:

• When callpipe is invoked, the stage that invokes it is suspended until the new pipeline has run
 to completion. When the callpipe command completes, its return code is the return code
 resulting from running the added pipeline.

 When addpipe is invoked, the stage that invokes it regains control as soon as the new pipeline
 has been created. The added pipeline runs in parallel with the stage that created it (and, in
 fact, the added pipeline can continue to run after the invoking stage has ended). Neither is
 able to examine the other’s return code. The return code from the addpipe command itself
 indicates only whether its pipeline specification was syntactically correct.

• callpipe can use only redefine connectors. (This follows from the fact that the stage is
 blocked, so no data could flow on a prefix-style connection.) When a subroutine pipeline
 created by callpipe decides that it will process no more records and sets end-of-file to flow out
 through a connector to the invoking stage, the invoking stage’s original connection is
 automatically re-instated.

 addpipe can use redefine connectors, but callpipe is more suitable for most cases where
 redefine connectors are required. When a redefine connector is used with addpipe, the
 original connection cannot be restored. When a prefix connector is used with addpipe, the
 restoration of the stage’s original connection is not automatic, but requires an explicit sever of
 the added stream.

• A pipeline added by callpipe can run only at the same commit level as the invoking stage (or a
 lower one). If a subroutine pipeline created by callpipe attempts to commit to a higher level
 than the invoking pipeline, it is suspended until the invoking pipeline reaches that commit
 level.

 The commit level of a pipeline added by addpipe is independent of the commit level of the
 invoking pipeline. Data can flow on a connection established by addpipe even if the pipelines
 on the two sides of the connection are not at the same commit level.


