

Virtual Machine CMS Pipelines
pattern — A Filter for Pattern Matching

Edition .33337

March 4, 2009

John P. Hartmann

IBM Danmark A/S
Nymøllevej 91

DK-2800 Lyngby
Danmark

JOHN at EMEAVM1 (jphartmann@vnet.ibm.com)

Formatted March 4, 2009 11:45 a.m.

IBM Internal Use Only

 IBM Internal Use Only

Acknowledgments

This filter owes a lot to SNOBOL4. See Griswold, Poage, Polonsky: The SNOBOL4 Programming Language (Second Edition),
Prentice-Hall, 1971. Though pattern only matches, the way a pattern is matched is more or less the same, and the tutorial in the
manual (using bead diagrams) is a useful introduction.

The first atoms written were based on the basic pattern variables in SNOBOL4.

The most enthusiastic user, Brent Longborough, kept me honest with the function during the phase when pattern grew to its current
state. My Bookmaster Mentor, Kevin Minerley, kept me honest with the documentation.

Disclaimer

The program described herein (pattern) was written entirely for my own use and is not available as an IBM product.

This paper has not been submitted to formal review; the views presented are entirely my own.

Lyngby, June 1992. j.

Third Edition (June 1992)

This edition describes the function in edition .33337 of PIPSYSF MODULE. Changes since December 1989 are marked with a
vertical bar in the margin. Most changes are editorial.

 Copyright IBM A/S 1988, 2009. All rights reserved.

 IBM Internal Use Only Contents

Table of Contents

Preface . vi
What is pattern? . vi
Why pattern? . vi
Who is pattern for? . vi
Publications . vii

Overview . 1
Sample REXX Programs and Equivalent Patterns 1

pattern Concepts . 4
Cursor . 4

Left Margin . 4
Right Margin . 4

String Expression . 4
Variables . 5

Variable names . 5
The Output Buffer . 6

Flushing the Output Buffer . 6
Atom . 6

Match and Fail . 6
Types of Atoms . 7
Atoms Moving the Cursor . 7
Conditional Atoms . 7
Atoms that Never Fail . 8

Assignment by Pattern Matching . 8
pattern Expressions . 9

Subsequentation . 9
Alternatives . 9
Grouping with Parentheses . 10
Term . 10
Nesting Pattern Expressions . 10

Iteration . 10
What Happens when an Atom Fails? . 11

The Fence . 11
Distributing Assignment . 11

Pattern File . 12

Writing a Pattern Expression . 13
Sample Pattern that Replaces Blanks with an Asterisk 14

If-Then-Else . 15
The Output Buffer . 16

Getting Data into the Output Buffer . 16
Getting Data to the PIPE from pattern—Using FLUSH 16
Examples of Getting Data into the Output Buffer 16

String Expressions . 18
Assignment Operators in String Expressions 18
The Separator . 19
Computed Variables . 19

Example of Computed Variables . 20
Doing Things Before and After the File Is Processed 20

 Table of Contents iii

 Contents IBM Internal Use Only

%INCLUDE Facility . 21
Summary of pattern Processing . 21
Tracing Matching Activity . 22

Tricks of the Match-making Trade . 23
Re-scanning the Input Line . 23

pattern Reference . 25
Abbreviations . 25
Parameters . 25
Types of Parameters . 25
The Most Useful Atoms . 25

Atom Reference . 26
ABBREV (String) . 26
ABBREVCI (String) . 26
ABORT . 27
AFTER (String) . 27
AFTERCI (String) . 27
ANY (Enumerated) . 28
ARB . 28
AT (String) . 28
ATCASEI (String) . 29
ATANY (String) . 29
BAL . 29
BREAK [(Enumerated)] . 30
CANCEL (Integer) . 30
CASEI (String) . 31
EOF (String) . 31
FAIL . 31
FENCE . 32

| FIRST . 32
FLUSH [(String)] . 32
IF (Integer) . 33
LEN (Integer) . 34
NEXTWord [(Enumerated)] . 34
NOT (String) . 34
NOTANY (Enumerated) . 35
NOTCASEI (String) . 35
NULL [(String)] . 35
ONCE (String) . 36
OUTput (String) . 36
POS (Integer) . 37
REM . 37
REST . 37
RPOS (Integer) . 37
RTAB (Integer) . 38
SPAN [(Enumerated)] . 39
STRing (String) . 39
TAB (Integer) . 39
TO (String) . 40
TOCASEI (String) . 40
TOF (String) . 40

iv CMS Pipelines: pattern

 IBM Internal Use Only Contents

TOWORD [(Enumerated)] . 41
WORD [(Enumerated)] . 41

String Expressions . 42
White Space . 42

Additional Operators . 42
Assignment . 42
Separator . 43

Operator Precedence . 43
Built-in Functions as in REXX . 43
Built-in Functions Particular to pattern . 44

CMS - Issue CMS Commands . 44
CURSOR - Return the Cursor Position . 44
C2F - Format an 8-byte Character String as a Floating Point Number. . . . 44
FLUSH - Flush the Output Buffer into the Pipeline 44
F2C - Convert a Floating-point Number to the Internal Representation for a

Long Floating-point Number. 44
INPUT - Return Contents of the Current Input Record 44
OUTBUF - Return Contents of the Output Buffer 45
OUTPUT - Append to the Output Buffer . 45
PIPCMD - Issue a Pipeline Command . 45
SETDATE - Set the Date and Time to Use 45
SUBCOM - Issue a String to a Subcommand Environment 45

REXX Functions not Provided . 45

Messages . 47

Appendix A. Miscellaneous Reference Information 51
Formal Syntax of a Pattern . 51
Notes for SNOBOL4 Gurus . 51
Considerations for Compatibility with the Future 52
Compatibility with the Past . 52
Incompatibilities with the Past . 52

Appendix B. National Characters . 53

Appendix C. Sample Traces . 54

Index . 57

 Table of Contents v

 IBM Internal Use Only

 Preface

What is pattern?
pattern is a filter for CMS Pipelines to perform complex context-sensitive searches
and text replacements. For example, pattern can change all quotes to “&esq.”,
except for those in figures, GML tags, and examples.

pattern works by matching a pattern (its argument string) against each input record.
Output records are built from input or literal data, or both; zero or more output
records can be written while an input record is processed. Output records can be
written to any stream. pattern has memory. You can store values in variables to
be used when processing subsequent records.

 Why pattern?
When you cannot formulate a task as a cascade of built-in filters, your alternatives
are to write a REXX program to perform the function or to use pattern.

pattern is useful:

� When the function is so simple that you would rather not create a separate file
with the REXX program. Write the pattern as the argument in the pipeline
specification.

� When the function is so complex that REXX parse has to be combined with
logic and things become cumbersome. Such a pattern is often stored in a sep-
arate file.

� When the REXX program runs too slowly. Though pattern is interpretive, it
does not rely on CMS services directly; you can expect a speed-up of five
times over equivalent REXX function.

Who is pattern for?
Thus, pattern may be useful for many people. It is particularly suited to the
toolsmith, though its syntax is not like most other programming languages.

� SNOBOL old-timers are likely to find it easy to understand.

� E?GREPpers should find many concepts they already understand, though the
syntax is more verbose. pattern can recognise strings from context-sensitive
languages.

� REXX programmers yearning for more powerful parsing constructs should find
pattern quite useful.

vi CMS Pipelines: pattern

 IBM Internal Use Only

 Publications
CMS Pipelines User’s Guide, SC24-5609, describes how to use CMS Pipelines.

CMS Pipelines Reference, SC24-5592, describes the built-in programs and pipeline
commands.

The guide and reference for the VMTOOLS version of CMS Pipelines is PIPUG
LIST3820 (on VMTOOLS).

 Preface vii

 IBM Internal Use Only

viii CMS Pipelines: pattern

 IBM Internal Use Only

 Overview

The pipeline filter, pattern, processes its argument string (the pattern) against each
input record. Typically, these steps are performed:

1. Read a record from the primary input stream. The record is read with the
locate-mode interface which blocks the left-hand neighbour stage while the
record is processed.

2. Match the record against the argument string (which is called a pattern
expression), loading data into an output buffer in the process.

3. Write the contents of the output buffer to the primary output stream, if the
pattern matches the input record.

4. Reset the output buffer to be empty; the contents of the output buffer are dis-
carded if the pattern does not match the input record.

5. Release the input record.

Thus, pattern is driven by input data; you do not program in the sense you write
code for REXX. A pattern is more like the template in the REXX Parse instruction
than it is like procedural code.

In general, the argument string to pattern is an expression, defined recursively:

1. An atom is a term of a pattern expression.

2. A list of terms is a pattern expression.

3. Two or more lists of terms separated by the keyword OR are a pattern
expression.

4. Recursion: A pattern expression in parentheses is a term of a pattern
expression.

The argument to an atom, if one is provided, is a string expression. This is very
close to a REXX expression (but not precisely one). Many built-in functions are
provided; most are equivalent to functions available in REXX.

Note: pattern implements concepts from SNOBOL4. If you do not know SNBOL,
be forewarned that some of these concepts are subtly different from what you may
expect if you are used to procedural languages.

Sample REXX Programs and Equivalent Patterns
Figure 1 on page 2 is a REXX program to copy its input stream to the output. The
command environment is CMS Pipelines, rather than CMS; READTO and OUTPUT
are pipeline commands. READTO loads the next input record into the variable;
OUTPUT writes its argument to the output stream.

 Overview 1

 IBM Internal Use Only

The COPY program is invoked by coding it between vertical bars in the pipeline:

pipe ...|copy|...

The equivalent pattern is trivial; it instructs pattern to copy the input record to the
output:

pipe ...|pattern rest:output|...

This example was rather unkind to REXX; Figure 2 is the reverse; it shows a
sample REXX program which reads input records, parses them, and writes output
records.

The equivalent pattern stage is shown in the context of a simple pipeline in
Figure 3. The figure shows what you write in the pipeline specification; no addi-
tional files are required.

The pattern expression is the argument string to pattern. The whole pipeline is
written as a REXX expression continued over three lines. Figure 4 on page 3
describes each atom in the pattern expression.

Figure 1. COPY REXX

/* Copy lines. This releases a synchronous stage. */

/* John Hartmann 31 May 1989 13:07:28 */

signal on novalue

signal on error

do forever

 'readto in'

 'output' in

end

error: exit RC*(RC¬=12)

Figure 2. Sample REXX Program

/* Sample REXX parsing program */

/* John Hartmann 27 Apr 1989 18:17:16 */

signal on novalue

do forever

 'readto in'

 If RC/=0 /* EOF? */

Then exit /* Yup, get out */

parse var in del+1 string (del) rest

'output' 'String length' length(string) 'value' rest'.'

end

Figure 3. A Sample Equivalent Pattern

/* Pattern sample EXEC */

'pipe < input file|',

'pattern arb:del to(del):string arb',

'output("String length " length(string) " value ")',

 'rest:out output(".")|',

 'console'

2 CMS Pipelines: pattern

 IBM Internal Use Only

The examples Figure 2 on page 2 and Figure 3 on page 2 give the same result
when an input line contains a properly delimited string, but REXX and pattern differ
markedly when the string is not properly delimited: REXX assigns null values to a
variable for which there are no data; pattern fails instead. The example in Figure 3
on page 2 discards records that are not properly delimited. A pattern expression
can have alternatives to perform when matching fails; in contrast, “if” instructions
must be used in REXX to determine if input data have the correct format.

Figure 4. Pattern Explained

arb:del Scan one character (the first on a line) and assign its
value to the variable del.

to(del):string Scan up to the next occurrence of the character and
assign the value scanned to the variable “string”.

arb Discard the second occurrence of the character.

output(...) The second line writes the result of the expression
into the output buffer. Unlike REXX, a blank in an
expression means catenate without a blank; thus, the
blanks around the string are included in the literals.

rest:out Append the remainder of the input record, if any, to
the contents of the output buffer.

output(".") Append a period to the contents of the output buffer.

 Overview 3

 IBM Internal Use Only

 pattern Concepts

 Cursor
The cursor points into the input record; it moves from left to right as the pattern
expression is matched. There is also a pointer into the pattern expression to the
“thing” being matched at any one time; this pointer has no special name.

The cursor sits between characters. It starts out before the first character of the
input record; this is position 0.

 Left Margin
The cursor position before the first character of the current input record. The
cursor is put in the left margin when a record is read.

 Right Margin
The cursor position after the last character of the current input record. When a null
record (one of zero length) is read, the cursor is both in the left and the right
margin.

 String Expression
The argument to an atom is an expression similar to a REXX expression. The
differences are noted in “String Expressions” on page 42; the major ones are:

� Numbers are integers; fractions and exponents are not supported.

� Unset variables are null: a reference to a variable that has not been set
returns a string of length zero.

� A null string converts to the number zero when used with an arithmetic oper-
ator. (But the integer zero converts to the string of one character with a single
zero.)

� The relational arigthmetic operators (=, >, <, and their variations) treat a null
string or a string of blanks as zero by nature of the automatic conversion to
zero.

� The assignment operator (:=) assigns a value to a variable. The result of the
assignment operator is the value set, that is, the right-hand side of the oper-
ator; an expression can have multiple assignment operators.

� The discard operator (;) evaluates two expressions. The result of the left-hand
expression is the result of the discard operator. The result of evaluating the
right-hand side is discarded; it is evaluated only for side effects (often assign-
ment).

� Variable names are folded to uppercase.

4 CMS Pipelines: pattern

 IBM Internal Use Only

Incompatibilities with REXX expressions

� The blank operator catenates two strings without inserting a blank. Write a
string with a blank when you wish one.

� The blank operator has a different precedence than in REXX; use paren-
theses when expressions are assigned to variables.

 Variables
Variables are set by

� the assignment operator in a string expression, and
 � pattern matching.

Variables set by the assignment operator are permanent; they retain their value
| until reset by assignment or pattern matching. If a variable that was set by assign-
| ment is later set by pattern matching, it reverts to being ephemeral.

Variables set by pattern matching contain a substring of the input record. Such
variables are discarded with the input record when the next record is read.

 Variable names
� Variable names begin with an underscore, a letter, or one of the national char-

acters shown in Figure 39 on page 53. Letters are a-z and A-Z. National
characters are a subset of the code points defined for national use on 3270.

� Names with more than one character or underscore have the additional charac-
ters made up from letters, underscores, national characters, and numbers.

� Variable names cannot be longer than 250 characters.

� Variable names are translated to uppercase using the translate table pointed to
by the contents of the field NUCUPPER in NUCON. As shipped with CMS this
translates a through z to A through Z. It does not change the national use
code points. On MVS uppercasing is performed using a table translating the
English letters only; the MVS table is hardwired into CMS Pipelines; it cannot
be modified.

The contents of variables that have not been assigned a value are considered to be
the null string.

At the moment, compound variables (for instance, q.fred) are not supported;
however, the name of the variable to assign a value can be computed as shown in
Figure 7 on page 6. Use the built-in function VALUE to refer to the value of a

Figure 5. Variable Names

a Z {bler b}de #7 $6!!

Figure 6. Not Variable Names

q.fred The period is not allowed in a variable name.

2u The first character must be a letter or a national character.

 pattern Concepts 5

 IBM Internal Use Only

variable whose name is computed. Computed names are truncated after 250 char-
acters and folded to uppercase; any character is valid in a computed name.

Figure 7. Using a Computed Variable Name in an Assignment

('q.' fred):='the value'

The Output Buffer
Records written by pattern are built in an area called the output buffer. Data
loaded in the output buffer are appended to the previous contents of the buffer.
You can append data from

� the input record,
� expressions you compute, or
� a combination of these.

Flushing the Output Buffer
You can flush the output buffer before the pattern is completely matched; this writes
the contents of the buffer so far to an output stream and resets the buffer to be
empty. You can select which stream to write the buffer by an optional argument;
the default is to write to the primary output stream.

When the pattern is matched and the output buffer has one or more characters,
pattern automatically writes this to the primary output; you need not use an explicit
flush for this, unless you wish to write a null record.

 Atom
An atom is the smallest unit of matching. Atoms are listed in alphabetical order in
“Atom Reference” on page 26.

An atom is an identifier and optionally an argument string in parentheses. Figure 8
shows an example of an atom.

This looks like a REXX function call, but unlike REXX, the atom does not return a
result; it either matches or fails.

Figure 8. A Sample Atom

string("abc")

Match and Fail
In the example in Figure 8, matching the atom is done by testing if the string is
present after the cursor position. If the string is present, the atom matches, and the
cursor is moved beyond the string it matches.

The atom fails when, in this particular case, there are fewer than three positions
between the cursor and the right margin, or if the string does not match the con-
tents of the input record from the cursor position onwards.

In general, an atom fails when a condition is not satisfied; the cursor moves from
left to right when the atom matches (though it can move zero positions).

6 CMS Pipelines: pattern

 IBM Internal Use Only

Types of Atoms
It is convenient to group atoms into three categories:

� Atoms that match and move the cursor, or fail.
� Atoms that either match or fail, but do not move the cursor.
� Atoms that never fail and do not move the cursor.

Atoms Moving the Cursor
When a “real” atom is matched, the cursor moves to the right (maybe zero places,
but to the right all the same). Such an atom fails, for instance, when data at the
cursor are not a specified string.

The substring of the input record matched by the atom is the string between the
cursor position before and after matching the atom; it can be assigned to a vari-
able, and appended to the output buffer.

Some examples of this kind of atoms are shown in Figure 9.

Figure 9. Some Real Atoms

any("abc") Matches a single character which is either a, b, or
c.

"abc" Matches the string of three characters; the atom
STRING is assumed for a literal string or a variable.

tab(5) Moves the cursor between the fifth and sixth char-
acter of the input record, assuming the cursor is at
or to the left of this position. It fails when the
cursor is to the right of the fifth position.

rem Match to the end of the record. REM cannot fail; it
matches the null string in the right margin.

 Conditional Atoms
These are also called predicates. They are atoms that fail or match depending on
some condition, but do not move the cursor. In jargon, they “match the null string”
if the condition is satisfied.

Figure 10. Some Predicate Atoms

pos(5) Fails unless the cursor is between the fifth and sixth
character in the input record.

rpos(0) Test if the cursor is in the right margin. It fails
when the cursor is not in the right margin.

This is like POS, but counting from the right of the
record towards the left.

 pattern Concepts 7

 IBM Internal Use Only

Atoms that Never Fail
Atoms that do not move the cursor and never fail are matched to obtain side
effects, and to complete an expression.

Since the cursor does not move, these atoms also match the null string.

Figure 11. Some Never-fail Atoms

output("abc") Append the string to the contents of the output
buffer.

flush Write the current contents of the output buffer to the
primary output stream and reset the buffer to be
empty.

null(notfirst:=1) Evaluate the expression to set the variable to 1.

Assignment by Pattern Matching
Put a colon and a variable name after an atom to assign the string matched by the
atom to a variable. The variable is reset to the null string when the next input
record is read.

When you assign a value to one of the simple variables OUT, OUTP, OUTPU, and
OUTPUT, the string is also appended to the output buffer.

Use assignment in a string expression when you wish to retain the value of a vari-
able after the next record is read.

Figure 12. Assigning Values to Variables

len(5):out This assigns the next five characters from the
cursor position to the variable “out” and also
appends this string to the output buffer.

This is the most efficient way to append to the
output buffer. It is also the shortest one to type.

tab(7):var

output("it is: " var)
This example shows a sequence of two atoms.
The first one moves the cursor after the seventh
character of the input record (assuming it is not
already beyond this position) and assigns the string
to the variable “var”. The second atom appends a
literal and the contents of the variable to the output
buffer.

8 CMS Pipelines: pattern

 IBM Internal Use Only

Figure 13. Assigning Permanent Values to Variables

word:out

null(stored:=out)
The first atom assigns a blank-delimited word (or
the remainder of the record) to the variable “out”,
and appends it to the output buffer.

The second atom does nothing as far as pattern
matching is concerned; use it to write a string
expression to assign the value to the permanent
variable “stored”.

word:var

null(var:=var)
In this example, the word is stored in a permanent
variable without being written to the output.

The string expression may look redundant, but it
makes the variable “var” persistent.

 pattern Expressions

 Subsequentation
A very long and very fine word for doing things in sequence. A list of atoms
matches when all atoms in the list match; they are tested from left to right in the
order written.

The example in Figure 14 shows a list of two atoms. It matches one of the letters
a, b, or c followed by one or more digits.

Figure 14. Sample of a List of Atoms

any("abc") span("0123456789")

 Alternatives
Use the keyword OR to separate alternative lists of atoms. There can be more
than two alternatives, so this can also be thought of as a “case” construct.

One of the alternatives must match for the pattern as a whole to match. Alterna-
tives are tested in the order written. When testing an alternative, the cursor is
moved back to where it was when the expression was “entered”, to test the first
alternative. Side effects, for instance assignments and output, are not undone.

Figure 15 shows an expression with two alternatives each of which consists of two
atoms. Two types of strings are matched:

1. Strings beginning with one of the letters a, b, or c, followed by one or more
numbers.

2. Strings having a colon in them up to the next blank or period. This (naively)
looks for a GML tag.

Figure 15. Sample Alternatives

any("abc") span("0123456789")

 or

to(":") word(". ")

 pattern Concepts 9

 IBM Internal Use Only

Grouping with Parentheses
Parentheses group atoms. OR has lower precedence than subsequentation; use
parentheses when you wish to have alternatives in a list of atoms.

Figure 16. Sample Grouping

"a" len(5) or rest The first list matches string beginning with “a” which
are at least 6 characters; the alternative matches
anything. Thus, this expression never fails.

"a" (len(5) or rest) The first atom matches the character; the
expression in parentheses matches the next five
characters or the remainder of the record, if less
than five characters remain in the record. The
complete expression fails if the first character is not
“a”.

 Term
A term is an atom or an expression in parentheses. The substring of the input
record matched by a term is assigned to a variable just like the string matched by
an atom.

Nesting Pattern Expressions
The amount of virtual storage available is the only limitation to the nesting of
pattern expressions.

 Iteration
A term (an atom or a pattern expression in parentheses) is iterated when it is
matched repetitively.

Special characters after a term indicate how it should be iterated:

? Zero or one time.
* Zero to infinity.
+ One to infinity.
= A specific number of times. Write a range as a minimum and a maximum

number separated by a hyphen.

Note: The iteration character is before variable assignment, if any.

First time an atom is met, pattern matches it the minimum number of times. The
minimum number of times (sometimes zero) is matched unless a failure of a subse-
quent atom forces further iteration. This may be counter-intuitive; see the example
in “NULL [(String)]” on page 35.

When an assignment is made as a result of matching an iterated term, the value
assigned begins with the position of the cursor before the first time the term was
iterated. For example, in the expression:

arb*:var

the first time ARB is matched the variable is set to one character, the next time to
two characters, and so on. However, in the expression:

10 CMS Pipelines: pattern

 IBM Internal Use Only

(arb:var)*

the assignment is made as the result of matching an atom which is not iterated, so
the variable is set to one character each time ARB is matched.

Warning: Though you probably think of iteration in the way of procedural pro-
gramming, this breed is different. The iteration character specifies that the atom
can be iterated; it is iterated the minimum number of times when pattern matching
is moving forward. Any further iteration is caused by failure of a subsequent atom
or expression. It is often the failure of a subsequent predicate that drives the iter-
ation.

What Happens when an Atom Fails?
The cursor does not advance when an atom fails. pattern goes back through
matched expressions to find an expression that it can iterate. pattern tries the
alternative when nothing is found to iterate.

� Iteration is possible:

If a term (an atom or an expression) can be iterated further, the cursor is
moved back to the position after the last iteration (possibly going back over
strings matched by atoms since then), and the expression is matched one more
time.

� Iteration is not possible:

When no iteration can be done, the cursor is moved back to where it was at
the beginning of the pattern expression, and the next alternative is matched.

� No iteration is possible and no alternative matches:

If no expressions can be iterated and no alternatives are matched, the
expression fails, and the failure propagates to the containing expression. This
failure is processed just as when an atom fails.

 The Fence
Put a fence when you do not wish a failure to go back or look for alternatives at a
particular level of expression. Use FENCE to improve performance when you know
that there is no point in trying alternatives. You can also use it when you do not
wish the alternative to be tried as described in “If-Then-Else” on page 15.

 Distributing Assignment
These two expressions perform the same function:

to("abc"):out rem:out

(to("abc") rem):out

This, however, is a special case because REM cannot fail. The following two
expressions do not always give the same result:

after("abc"):out to("def"):out or null

(after("abc") to("def")):out or null

The first expression produces output for all lines with abc in them; the string up to
def is also included if it is present after abc. Lines without def after abc cause a
failure in TO, but the contents of the output buffer loaded by the first assignment

 pattern Concepts 11

 IBM Internal Use Only

are retained. In the second expression, the assignment is performed when both
atoms are matched; no assignment is done when either of the atoms fails.

 Pattern File
Write the pattern expression as the argument to pattern or put it in a file and
include it using the facility described in “%INCLUDE Facility” on page 21. You can
nest includes. Pattern files can be loaded in storage with EXECLOAD; this
improves performance when a pattern file is used over and over again. This uses
the pattern in the file TEST PATTERN:

Though simple patterns are easy enough to write as arguments on the filter,
complex ones with many strings are easier to write if you use a pattern file where
you do not have to worry about putting REXX quotes around constants, along with
all the quotes in the pattern itself.

Figure 17. Using %include

...|pattern %include(test)|...

12 CMS Pipelines: pattern

 IBM Internal Use Only

Writing a Pattern Expression

Case is respected in strings.

Case is ignored (folded using the NUCUPPER translate table) in:

� Names of atoms,

� Names of variables (but this may change), and

� Built-in functions in string expressions.

White space is required to delimit an atom from another one, and the keyword OR.
White space consists of:

 � Blanks.

� End-of-line in an embedded file.

� Comments. Comments are REXX-style; you can nest them.

� %include orders; you can nest includes.

There must be no white space before the left parenthesis of an atom or a built-in
function reference; a left parenthesis that follows white space groups an
expression.

Figure 18. Correct Pattern Expressions

Pattern What it Does

word:label toword

word:opcode toword

rest:operands

Scan the label and operation code of an Assembler
statement. The operands and comments, if any,
are scanned into the variable operands.

("abc" or any("def"))*

rpos(0)
Ensure that the record is null or has one or more
occurrences (in any order) of the string abc or char-
acters d, e, or f.

arb* "magic" Ensure that the input record has the string “magic”
in it somewhere, for instance in “unmagical”.

to("magic") The same as the previous example using an atom
instead of iterating an expression. This is much
more efficient. Always try to write goal-directed pat-
terns.

Figure 19. Incorrect Pattern Expressions

Bad Sample What Is Wrong with it

any Parentheses with a string expression are missing;
ANY must have an argument.

/* A /* comment */ Comments are not properly nested; the first
comment is not closed.

(string("abc") Parentheses are not balanced.

 Writing a Pattern Expression 13

 IBM Internal Use Only

Sample Pattern that Replaces Blanks with an Asterisk
Figure 20 shows a complete pattern and an explanation of its constituents.

Figure 20 (Page 1 of 2). Replace Run of Blanks with an Asterisk

(break:out span out("*") or rest:out)* rpos(0)

Pattern Segment What the Pattern Segments Does

(break:out

span out("*")

or rem:out)*

A pattern expression in parentheses followed by an
asterisk to indicate iteration from zero to infinity.

First time this is matched, it matches the null string.

rpos(0) Test for the cursor being in the right margin (zero to
the left of the right margin).

If the input record is null, the pattern expression is
now matched.

When the input record is a character or more,
RPOS fails first time and the expression in paren-
theses is matched once more. The cursor is still in
the left margin.

break Locate the next blank.

The cursor moves to be in front of the first blank in
the record.

BREAK fails when there are no blanks to the right of
the cursor.

:out Set a variable named “out” to the matched string.

The matched string includes everything up to the
blank.

A variable with a name that is an abbreviation of
“output” gets its contents written to the output
buffer.

span Skips or “spans” blanks until it finds a non-blank or
hits the right margin. There must be at least one
blank, but we know this is the case because BREAK
matched.

out("*") Writes the character (or literal string) “*” to the
output buffer.

or Keyword to delimit alternatives.

The following atom is matched if BREAK fails.

rem:out Matches any characters up to the end of the record
ensuring the last word (if any) gets written to the
output buffer

14 CMS Pipelines: pattern

 IBM Internal Use Only

The built-in function SPACE can do a similar thing while stripping leading and
trailing blanks. The example in Figure 20 on page 14 produces a leading and/or
trailing star if the input record has leading and/or trailing blanks.

pattern output(space(input(),,'*'))

INPUT is a built-in function that returns the complete input record.

Figure 20 (Page 2 of 2). Replace Run of Blanks with an Asterisk

rpos(0) Test for the cursor in the right margin.

When the cursor is not in the right margin, RPOS
fails and the previous expression is iterated.

This mechanism ensures that the complete record
is processed. When the input record is null, the
cursor is in the right margin after no iterations and
the record is completely processed. pattern dis-
cards a null output record unless you force it out
with FLUSH. When there is one word in the input
line, rpos(0) matches after one iteration; two iter-
ations are required to process two words, and so
on.

Note that it is the failure of rpos(0) that drives the
iteration; without it any input record would be
matched immediately and no output produced.

 If-Then-Else
Write if-then-else constructs with the atom IF in this manner:

Note that <then> and <else> clauses are pattern expressions, not string
expressions. (Use NULL to evaluate an expression for its side effects.) The atom
FENCE prevents failure in the then-clause from trying the else-clause as an alterna-
tive; it is not required if the then-clause cannot fail.

Multiple tests are possible with the atom IF.

(

if(<expression-1>)

 fence <then-clause>

or

if(<expression-2>)

 fence <then-clause>

or

 <otherwise>

)

A test can often be done without using the atom IF, as shown in these two equiv-
alent ways of incrementing variable v if a is positive.

Figure 21. If/then/else

(if(<expression>) fence <then-clause> or <else-clause>)

 Writing a Pattern Expression 15

 IBM Internal Use Only

(if(a>0) null(v:=v+1) or null)

null(v:=v+(a>0))

The Output Buffer
Output records are built in the output buffer. Its contents are discarded when a
record is read.

Getting Data into the Output Buffer
Data are loaded into the output buffer:

� As a side effect of assigning matched input data to variables that are an abbre-
viation of OUTput, down to three characters.

� By the OUTPUT atom.

� By the OUTPUT built-in function.

Data loaded in the output buffer stay there even when the expression loading the
string later fails and the cursor is backed up before the string. When the result of
an iteration is loaded in the output buffer, a string is appended after each iteration.

Getting Data to the PIPE from pattern—Using FLUSH
The contents of the output buffer are written to the pipeline when:

� The atom FLUSH is matched.

If the output stream is not connected when writing with the atom FLUSH, the
argument to the atom EOF is evaluated for side effects, and processing stops
with return code 0.

� The FLUSH built-in function is called

When the FLUSH built-in function is used to empty the buffer, the result is a
null string if the buffer was written OK; the string “1” is returned when the
output stream is not connected.

� After the pattern matches an input record.

Processing stops with return code 0 without evaluating the argument to EOF
when a pattern is matched and the primary output stream is not connected.

The argument, if present, to the atom or function FLUSH, designates the stream to
receive the record; it defaults to the primary output stream.

There is one output buffer for all streams. Store data in variables when building
multiple records in parallel.

It is an error to select an undefined stream with FLUSH or the built-in function.
Processing terminates with an error message.

Examples of Getting Data into the Output Buffer

16 CMS Pipelines: pattern

 IBM Internal Use Only

Figure 22 is a complete pipeline with the CMS response. It shows how iteration
interacts with assignment to the output variable. Figure 23 shows the components
of the pattern, with a description.

Figure 24 shows the result when FLUSH is matched on each iteration.

The result is that a record is written after each iteration; the blank line represents
the initial null record.

Figure 25 shows the result when only the complete result of the expression is
assigned to the output variable.

Note: REST performs the same function as the expression and is much faster.

Figure 22. Iterating Assignment to OUTPUT

pipe literal abc|pattern arb*:out rpos(0)|console

aababc

R;

Figure 23. Loading Data in the Output Buffer

Pattern Segment What the Pattern Segment Does

arb*:out The first time, zero iterations are done and the
atom is not matched.

This means that a null (empty) string is matched
and appended to the output buffer. This leaves it
empty.

rpos(0) The cursor is not in the right margin, so RPOS fails.
pattern backs up to the previous atom that can be
iterated.

arb*:out ARB is matched. It matches any character and
moves the cursor to be between the a and the b,
loading the first a in the output buffer.

This process continues. On the next iteration, “ab”
is appended to the output buffer, and so on.

Figure 24. Iterating Assignment to OUTPUT

pipe literal abc|pattern arb*:out flush rpos(0)|console

a

ab

abc

R;

Figure 25. Iterating assignment to OUTPUT

pipe literal abc|pattern (arb* rpos(0)):out|console

abc

R;

 Writing a Pattern Expression 17

 IBM Internal Use Only

 String Expressions
Arguments to atoms are called string expressions. They compute a number or a
string of characters, as required by the atom.

String expressions are like REXX expressions with a few differences noted above;
the most important ones are the assignment operator and the separator operator.

A sequence of digits is a numeric string. It is not converted to integer before it is
determined that an integer is required. Thus ANY(089) does see the string of three
characters, whereas ANY(089+0) sees a string of 89 because the leading zero is
discarded in the conversion to integer when the expression is evaluated.

Assignment Operators in String Expressions
To set a simple variable, put its name before the colon-equal operator. The
example below shows how to maintain a record count.

You can assign an expression to several variables; you can use the result of the
assignment operator as a term in a larger expression.

Figure 26. A sample Assignment

null(recno := recno+1)

:= The colon-equal operator assigns in the way “we
are used to”.

recno := The variable name is at the left-hand side of the
operator.

:= recno + 1 The expression is on the right of the operator. The
variable “recno” must be the null string, or numeric.

:= Remember the colon.

Figure 27 (Page 1 of 2). Multiple Assignments in an Expression

String Expression What it Does

a:=b:='string' The literal string is assigned to two variables, a
and b.

c:=1+b:=1+a:=0 The variable a is set to zero.

One is added to this result and assigned to b which
becomes one.

c is assigned the value 2.

'$' (n:=n+1) The variable n is incremented and the result is
appended to the literal dollar sign.

var := ('$' n:=n+1) The variable n is incremented and the result is
appended to the literal dollar sign.

The result is assigned to the variable var.

18 CMS Pipelines: pattern

 IBM Internal Use Only

Figure 27 (Page 2 of 2). Multiple Assignments in an Expression

String Expression What it Does

agg:=(var := '$' n:=n+1) The variable n is incremented.

The variable var is assigned the literal dollar sign.

The result is the two variables catenated; this is
assigned to agg.

Figure 28. Not an Assignment

null(recno = recno+1) The equal sign is the operator that tests for equality
of two terms.

This atom evaluates the result 0 which is discarded
by NULL; no assignment takes place.

 The Separator
Use a semicolon in a string expression to separate assignment operators. The
semicolon operator discards the result of the expression on the right-hand side; it is
evaluated only for its side effects.

The result of the semicolon operator is the expression to the left of it.

Figure 29. Using Separator Operator

String Expression What it Does

a:=1; b:=2 Two assignments are performed. The result of the
expression is 1.

 Computed Variables
The name of a variable to assign can itself be computed in an expression. Gener-
ated variable names are put in an expression in parentheses on the left-hand side
of the colon-equal operator. Parentheses with a string or a single variable refer-
ence is taken to be a simple name; write an expression, for instance prefixing a null
string (''var), to assign to the variable whose name is the contents of VAR.

Write parentheses with an expression after the colon when you wish to compute
the name of the variable to assign the result of pattern matching.

Input File: Pattern: Output File:

abc null(fred:='')

rest:('q.' fred)

output('Fred ="' fred '"')

flush

output(value('q.' fred))

Fred =""

abc

 Writing a Pattern Expression 19

 IBM Internal Use Only

Example of Computed Variables
Figure 30 loads the variables $1, $2, ... with the words of the input record and sets
N to the number of tokens met.

Assuming the file in Figure 30 is called TOKENISE PATTERN, then this is a way to
list the number of words on input lines.

...|pattern %include(tokenise) output(n " words on the line")|...

Figure 30. TOKENISE PATTERN: Assignment to a Computed Variable

/* Tokenise the input record. Assign variables &n */

null(n:=0) /* Reset counter */

/***/

/* Skip leading blanks */

/***/

(span(" ") or null)

/***/

/* Iterate over the words on the input line */

/***/

(

word:("$"(n:=n+1)) /* Take a word */

(span(" ") or null) /* Skip to next word */

)* /* Iterate */

rpos(0) /* Until the end */

Doing Things Before and After the File Is Processed
There are two special atoms, TOF and EOF. They must be first in the pattern; they
can occur at most once each. The argument is a string expression; it is evaluated
for side effects; the result is discarded. If the output buffer is not empty after the
expression has been evaluated, the contents of the output buffer are written to the
primary output stream and the buffer is reset to be empty.

The string expression in TOF is evaluated before the first record is read. You can
initialise variables using this atom. The difference between TOF and ONCE is that
the argument to TOF is evaluated also if there is no input; ONCE is not matched
before at least one record has been read.

The argument to EOF is evaluated after end-of-file is received; this atom is useful to
write the contents of a buffer that is stored in a variable. Figure 31 shows how
JOIN * is written with pattern. The contents of the variable “buffer” is by default
null, so it is not explicitly assigned a null value at the beginning.

The NULL atom is matched for each input record; the record is appended to the
buffer variable; no output is written while input records are read.

Figure 31. JOIN * as a pattern

...|pattern eof(output(buffer)) rem:r null(buffer:=(buffer r))|...

20 CMS Pipelines: pattern

 IBM Internal Use Only

 %INCLUDE Facility
This facility allows you to include pattern definitions from files stored on disk so you
do not have to worry about escaping and nested quotes, as you must when the
pattern is coded as the argument to pattern.

You can nest %includes to any practical depth. In 1988 the limit was 1365; it may
change over time, but it is expected to remain a very large number. The CMS file
system would need at least 6M of buffers to have so many files open concurrently.
There are no restrictions on the number of include files that can be referenced in a
pattern.

You can write include wherever you can put a blank or a comment. The case of
the instruction is immaterial; on CMS the argument is used to invoke < which proc-
esses a mixed-case argument in its own way.

On MVS, qsam is used to read a member from the partitioned dataset. The first
word of the argument specifies the member name. The second word (if present)
specifies the DDNAME; the default is PATTERN.

Notes:

1. A nested %include instruction must be complete on a single line of the file.

2. The %include instruction cannot have comments between the parentheses
specifying the file identifier.

3. Literal strings cannot span records in an imbedded file.

4. Pattern files can be EXECLOADed under CMS. To reach such files, you must
not specify a file mode; write the file name and optionally the type of the file.
Write the file mode or an asterisk when you wish to be sure you are using the
version on disk.

Figure 32. %include Syntax

INCLUDE(<fname> [{<ftype>|PATTERN} [<fmode>|*]]) /* CMS */

INCLUDE(<member> [<DDNAME>|PATTERN] /* MVS */

Summary of pattern Processing
pattern does the job in several stages:

1. Parse the argument string. pattern parses the argument string on commit level
-1.

A tree representation of the pattern and string expressions is built. Any errors
in this processing causes pattern to terminate without reading any input
records.

2. Commit to level 0. Quit if the return code is non-zero indicating failure of some
other stage.

3. If a TOF atom is present, the expression is evaluated for its side effects; the
result is discarded. This happens before the first record is read.

4. Process the input file.

 Writing a Pattern Expression 21

 IBM Internal Use Only

pattern does not delay the record unless the atom FLUSH or the built-in function
is used. Each input record is matched against the pattern proper (ignoring TOF
and EOF).

5. After end-of-file is received the expression in the EOF atom, if present, is evalu-
ated for its side effects; the result is discarded. This is normally to flush a
stored value.

Tracing Matching Activity
Activity is traced to the stream with identifier “trc”, if defined for the stage. When
defined for the primary stream, trace data are intermixed with normal output.

...|x.trc:pattern

If a stream is defined with identifier “xtrc”, the control block structure built, and
expression evaluation are also traced; this is intended for debugging, but it may be
used as a last resort when you get unexpected results.

22 CMS Pipelines: pattern

 IBM Internal Use Only

Tricks of the Match-making Trade

Re-scanning the Input Line
When keywords can be in any order on the input line, you can scan to a keyword,
find out what it is, and then process it accordingly. Or you can scan the line for a
particular keyword, irrespective of its placement, as the example with FAIL shows.

TOKENISE PATTERN shown in Figure 30 on page 20 leaves the cursor in the
right margin. Figure 33 shows how to process the input record word by word after
the number of words is determined by the included pattern. The REXX program PI
REXX is short-hand to include a pattern file; in this example the stage is |pattern

%include(anotl)|.

Figure 33. ANOTL PATTERN: Reprocess the Input Line

/* Annotate input file */

%include(tokenise) /* Tokenise the input line; set number of words */

fail or /* Force a failure to restart scan */

nextword /* Skip leading blanks; don't fail on null record */

null(line:=line+1; wc:=0) /* Initialise counters */

(

output("Line " line " word " (wc:=wc+1) " of " n ": ")

word:out /* Scan a word onto the end of the line */

flush /* Write output line */

nextword /* Skip blanks */

)* rpos(0) /* Until all is done */

 pipe literal abc def|pi anotl|console

�Line 1 word 1 of 2: abc

�Line 1 word 2 of 2: def

�Ready;

 Tricks of the Match-making Trade 23

 IBM Internal Use Only

24 CMS Pipelines: pattern

 IBM Internal Use Only

 pattern Reference

Each atom is described in a section beginning with a heading in the left margin and
ending with an example showing input, pattern, and output.

 Abbreviations
In the heading, the minimum abbreviation is shown in uppercase; any further char-
acters may be written with the same result.

 Parameters
Some atoms do not require parameters; simply write the name. Such atoms, for
instance ABORT, are shown with a single word in the heading.

Some atoms have an optional parameter; the type is indicated in square brackets
after the atom name. BREAK is an example of such an atom.

Atoms that require a parameter, for instance ANY, have the type in parentheses
after the atom name.

The name of the STRING atom may be elided when matching a single literal string
or the contents of a single variable. Use an explicit STRING when an expression
must be evaluated or when referencing a variable whose name is also the name of
an atom.

Types of Parameters
The argument required for an atom is shown in parentheses after the name of the
atom. There are three types of parameters:

Integer The atom requires a numeric argument that must be zero or posi-
tive. The result of the expression must be a string that can be
converted to a positive number or zero; processing stops at
runtime with a message if the conversion fails.

String The atom requires a character string. An expression is evaluated
and converted to a character string. The order of the characters in
the string is significant.

Enumerated The atom requires a list of characters. The argument is evaluated
and converted to a string of characters. The order of the charac-
ters is not important; a character can be duplicated without
changing the result.

The Most Useful Atoms
Check out these atoms first: CASEI, LEN, NEXTWORD, REST, STRING, TO,
TOWORD, and WORD.

 pattern Reference 25

 ABBREV � ABBREVCI IBM Internal Use Only

 Atom Reference

 ABBREV (String)
Never fails. Match leading characters from the argument string. ABBREV matches
the null string in the right margin, when the argument is null, and when the char-
acter after the cursor is not equal to the first charecter in the argument string.

ABBREV is similar to the REXX built-in function, but not the same.

Figure 34. REXX and pattern ABBREV

parse var rest word rest

if abbrev('user', word, 1) then ...

'u' /* minimum abbreviation */

abbrev('ser') /* What is optional */

(' ' or rpos(0)) /* Ensure it ends in a blank or the margin */

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

abbrev("Serenade"):out

output("*")

*

*

Se*

*

 ABBREVCI (String)
Never fails. Match leading characters from the argument string, regardless of case.
ABBREV matches the null string in the right margin, when the argument is null, and
when the character after the cursor is not equal to the first charecter in the argu-
ment string, regardless of case.

ABBREVCI is similar to the REXX built-in function, but not the same.

Figure 35. REXX and pattern ABBREVCI

parse upper var rest word rest

if abbrev('USER', word, 1) then ...

casei('u') /* minimum abbreviation */

abbrevci('ser') /* What is optional */

(' ' or rpos(0)) /* Ensure it ends in a blank or the margin */

26 CMS Pipelines: pattern

 IBM Internal Use Only ABORT � AFTERCI

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

abbrevci("Serenade"):out

output("*")

*

s*

Se*

*

 ABORT
Always fails. There is no back-up; the contents of the output buffer are discarded.
The next input record is read and processed.

ABORT is useful when you wish to discard records that match a list of atoms or
expressions.

The example looks for lines beginning with a colon and having the string “file” in
them somewhere. These lines are discarded; other lines are copied to the output.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

":" to("file") abort

or rest:out

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

 AFTER (String)
Position the cursor after the next occurrence of the argument string. AFTER fails
when the argument has more characters than there remains in the record, and
when the string does not occur to the right of the cursor. These two expressions
are equivalent.

after(string)

(to(string) len(length(string)))

See also AFTERCI, TO, and TOCASEI.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

after("fi") rem:out le is a

d=samp. for

 AFTERCI (String)
Position the cursor after the next occurrence of the argument string, ignoring case.
String and data bytes are translated to uppercase before being compared.
AFTERCI fails when the argument has more characters than there remains in the
record, and when the string does not occur to the right of the cursor. These two
expressions are equivalent.

afterci(string)

(tocasei(string) len(length(string)))

 Atom Reference 27

 ANY � AT IBM Internal Use Only

See also AFTER, TO, and TOCASEI.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

afterci("fi") rem:out le is a

gref refid=samp. for

 ANY (Enumerated)
A single character is matched if it occurs in the argument string. The converse is
NOTANY.

The example selects the first character from records beginning with an s in either
uppercase or lowercase.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

any("Saints"):output s

S

 ARB
Any single character is matched. Though infinitesimally faster, ARB is equivalent to
LEN(1). ARB fails when the cursor is in the right margin. ARB is useful after BREAK
to skip the delimiter character.

SNOBOL4 gurus should note that arb* behaves like the ARB they know.

arb* is used to indicate that any number of “noise” characters are to be skipped.
This usage is not the most efficient; often you can use one of the streaming atoms
to get to the next occurrence of, for instance, a string.

This example deletes the beginning of the record to the character after the first
colon.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

after(":") arb rem:out .This file is a

p1.pattern:ehp1..

igref refid=samp. for

 AT (String)
The null string is matched if the characters from the cursor match the string.

28 CMS Pipelines: pattern

 IBM Internal Use Only ATCASEI � BAL

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

at("s") rem:out sample for :hp1.pattern:ehp1..

 ATCASEI (String)
The null string is matched if the characters from the cursor match the string irre-
spective of case.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

atcasei("s") rem:out sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

 ATANY (String)
The null string is matched if the character after the cursor matches one of the char-
acters in the string.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

atany("master plumber")

rem:out

sample for :hp1.pattern:ehp1..

more information.

 BAL
Match characters to the end of the record or to the first unbalanced right paren-
thesis, whichever occurs first. The concluding parenthesis is not included in the
matched string. BAL fails when the remaining input has more left parentheses than
right parentheses in a way where they are not balanced at any time.

The opening parenthesis should have been scanned before BAL is matched.

Input File: Pattern: Output File:

abcdef bal:out abcdef

abc(def)ghi bal:out abc(def)ghi

(abc(def)ghi)rest '(' bal:out abc(def)ghi

(abc(def)ghi bal:out fails

 Atom Reference 29

 BREAK � CANCEL IBM Internal Use Only

 BREAK [(Enumerated)]
Characters are matched up to (but not including) the first occurrence of a character
in the argument string. With no argument, characters are matched up to the first
blank. The string matched can be null. Break fails in the right margin or if none of
the argument characters are present in the remainder of the record.

See also TO, TOWORD, and TOCASEI; the converse is SPAN.

BREAK and SPAN are often used in combination to scan words or other tokens as
shown in Figure 30 on page 20. Here is a simpler example:

'pattern',

'(span(" ") or null)', /* Strip leading */

'(break(" ") or rem) ...

This scans the first blank-delimited word in the record. Note the use of REST in
case BREAK fails because there is only one word on the line. The way shown of
skipping leading blanks is slightly faster than using a separate strip stage.

This example deletes the beginning of each line up to the first vowel.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

break("aeiou") rem:out is file is a

ample for :hp1.pattern:ehp1..

ee :Figref refid=samp. for

ore information.

 CANCEL (Integer)
pattern processing is terminated with a return code and no more input is read. The
return code is the integer argument.

CANCEL can be used when it is determined that input is not as expected, or to halt
processing at a selected record. The selection stage tolabel can be formulated
using CANCEL(0), for instance to stop at the first record beginning with “abcd”:

pattern "abcd" cancel(0) or rem:out

The record stays “in the pipe” where it can be read by a control stage. (This is only
relevant when the pipeline containing pattern is issued with the CALLPIPE
command.)

An EOF pseudo-atom is ignored when CANCEL causes processing to be terminated.

This example copies records up to the first one with a highlight phrase 1 tag.

30 CMS Pipelines: pattern

 IBM Internal Use Only CASEI � FAIL

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

eof(output('EOF'))

to(":hp1.") cancel(0)

or rem:out

:p.This file is a

 CASEI (String)
The string is compared with data from the cursor position onwards. String and data
bytes are translated to uppercase as per the translate table pointed to by
NUCUPPER before being compared.

See also AFTERCI and TOCASEI.

This example selects lines beginning with the word “see”, ignoring case, and copies
the rest of the line to the output.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

casei("see ") rem:out :Figref refid=samp. for

 EOF (String)
The string expression is evaluated once after end-of-file is received on input; the
result is discarded. This atom must be first in the pattern or after a TOF atom; it
cannot be iterated.

To count records:

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

tof(n:=0)

eof(output(n ' records'))

null(n:=n+1)

4 records

 FAIL
Always fails. Iterations and alternatives are tried. This can be used to re-scan a
string where things may occur in any order, as shown in this example courtesy of
Brent Longborough:

To(":nick.") ":nick." (Break(":") Or Rem) :nick Fail Or

To(":node.") ":node." (Break(":") Or Rem) :node Fail Or

Output(Left(nick,8) " " Left(node,8))

This example writes the beginning of the line up to “file” as a separate line. All
input lines are copied to the output.

 Atom Reference 31

 FENCE � FLUSH IBM Internal Use Only

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

to("file"):out flush fail

or rest:out

:p.This

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

 FENCE
Matches the null string first time it is met. It forces back-up not to try alternatives
for the level of expression the fence is at. This is used to say that there is no point
in trying alternatives because they are all known not to match.

pattern

"user " fence "abc"

 or

"dept " ...

Here, there is no point in matching what is known to be “user” with some other
string when it turns out that the user is not the one wanted.

FENCE is also used in an if/then/else construct to force a failure in the “then” clause
to cause a failure of the expression as a whole. Without the fence, a failure in the
first part would cause the alternative to be evaluated.

In the following somewhat contrived example, the third record does not have the
string “file” in it and thus TO fails; without the fence, the third record would be listed
as even.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

null(recno:=recno+1)

(if(recno//2)

 fence

 to("file"):out

or

output("Even record " recno)

)

:p.This

Even record 2

Even record 4

| FIRST
| Matches the null string while the first record of the file is being processed. Fails for
| all subsequent input records.

 FLUSH [(String)]
Matches the null string. The output buffer is flushed as a side effect. The argu-
ment (if present) specifies the stream to receive the record; a null expression
(assumed when no parentheses are coded) selects the primary stream.

A numeric result is taken as the stream number; a non-numeric result is a stream
identifier.

32 CMS Pipelines: pattern

 IBM Internal Use Only IF

The output stream specified remains selected until the next FLUSH atom is matched
or to the next call to the built-in function.

pattern arb:stream rem:out flush(stream)|

pattern (len(80):out flush or null) rem:out|

The first example shows how to send each record to the stream specified in the
first position; the stream number is not copied to the output. The last example
shows how to split a record once after 80 bytes if it is longer than 80 bytes.

The example below performs the same function as fblock 10. It is important that
the assignment to the output is inside an expression which is being iterated. The
second example shows how to write a record for each iteration.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

((len(10) or rem):output)*

flush rpos(0)

:p.This fi

le is a

sample for

 :hp1.patt

ern:ehp1..

See :Figre

f refid=sa

mp. for

more infor

mation.

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

(len(10) or rem)*:output

flush rpos(0)

:p.This fi

:p.This file is a

sample for

sample for :hp1.patt

sample for :hp1.pattern:ehp1..

See :Figre

See :Figref refid=sa

See :Figref refid=samp. for

more infor

more information.

 IF (Integer)
Matches the null string if the argument is non-zero. Causes a failure if the argu-
ment is zero.

if(abbrev('abcd','ab')) /* matches */

if(0) /* fails */

if(-1) /* matches */

If/then/else constructs can be made with parentheses and the OR keyword:

(if(<expression>) fence <then> OR <else>)

Code NULL when you have no else part.

 Atom Reference 33

 LEN � NOT IBM Internal Use Only

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

if(pos("file", input()))

rem:out

:p.This file is a

 LEN (Integer)
Matches the number of characters specified by the argument. There must be at
least that many characters after the cursor.

LEN can be used to skip over a string found with TO and TOCASEI. A more exotic
use is this example where as many characters are skipped as are in a (possibly
null) run of stars. The two lines are equivalent; the second one is preferable when
there are many stars in the run since they do not have to be copied to a variable.

(span("*") or null):w len(length(w))

null(beg:=cursor()) (span("*") or null) len(cursor()-beg)

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

len(4):out :p.T

samp

See

more

 NEXTWord [(Enumerated)]
Never fails. Match the null string in the right margin. Match characters up to the
first occurrence of a character that is not in the argument string. NEXTWORD
matches blanks when the argument is omitted.

NEXTWORD is equivalent to

(toword or null)

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

nextword("potatochips"):out

output("*")

*

sa*

*

*

 NOT (String)
The string is compared with data from the cursor position onwards. The null string
is matched if the argument is longer than the remaining part of the record or if the
string is not found at the cursor position.

The converse is STRING; see also NOTCASEI.

34 CMS Pipelines: pattern

 IBM Internal Use Only NOTANY � NULL

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

not(':p.') rem:out sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

 NOTANY (Enumerated)
A single character is matched if it does not occur in the argument string.

The converse is ANY. See also NOT.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

notany(":p.s") rem:out ee :Figref refid=samp. for

ore information.

 NOTCASEI (String)
The null string is matched if there remain fewer input characters than are present in
the argument, or if one of the characters is not equal to the corresponding one in
the string, ignoring case. String and data bytes are translated to uppercase as per
the translate table pointed to by NUCUPPER before being compared.

The converse is CASEI. See also NOT.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

notcasei("s") rem:out :p.This file is a

more information.

 NULL [(String)]
Matches the null string. A string expression may be coded in parentheses to set
variable(s) as a side effect; the result is discarded.

The first two lines in the example below are equivalent; the third line matches an
expression if it is present.

(null or (<expression>))

(<expression>)?

((<expression>) or null)

 Atom Reference 35

 ONCE � OUTput IBM Internal Use Only

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

(to("file"):out or null)

rem:r

output(translate(r))

:p.This FILE IS A

SAMPLE FOR :HP1.PATTERN:EHP1..

SEE :FIGREF REFID=SAMP. FOR

MORE INFORMATION.

 ONCE (String)
Matches the null string. The string expression is evaluated and the result discarded
first time this atom is matched. The argument is ignored forever after.

This atom can be used to evaluate a constant expression or an expression con-
taining the date or time which should be constant for a particular run of pattern. A
pattern can have any number of ONCE atoms; they need not be matched on the
first record.

pattern once(time:=time()) '1' out('Printed ' time) or ...

Code references to the time function if you wish to timestamp each record as it is
processed.

See also TOF and EOF.

In the following example, OUTPUT is a built-in function, not the atom.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

once(output("Once no "

recno:=recno+1))

Once no 1

 OUTput (String)
Matches the null string. The argument string is appended to the contents of the
output buffer as a side effect.

See also FLUSH.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

output("Record " n:=n+1) Record 1

Record 2

Record 3

Record 4

36 CMS Pipelines: pattern

 IBM Internal Use Only POS � RPOS

 POS (Integer)
Matches the null string if the cursor is at the position indicated by the number.
POS(0) is in the left margin of the input record.

See also RPOS.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

to("f"):out pos(7)

rem:out

sample for :hp1.pattern:ehp1..

more information.

 REM
Matches all remaining data. This is an infinitesimally faster convenience for
RTAB(0). REST is a synonym for REM.

REM is useful in combination with BREAK where a trailing delimiter is to be
assumed.

... (break(" ")', /* Skip to end of word */

'or rem)... /* Or take rest */

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

rem:out :p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

 REST
Synonym for REM which matches to the end of the input record.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

rest:out :p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

 RPOS (Integer)
Matches the null string if the cursor is at the position indicated by the number, rela-
tive to the end of the input record. RPOS(0) is in the right margin of the input
record.

 Atom Reference 37

 RTAB IBM Internal Use Only

RPOS(0) is often used to force iteration of an expression until the right margin is
met. It is important to ensure (often with REM) that the right margin is reached
eventually. To delete all occurrences of “abc”:1

'pattern',

 '(',

'to("abc"):out', /* Get to the string */

'len(3)', /* skip it */

'or rem:out', /* copy rest */

')* rpos(0)|' /* force iteration */

See also POS.

To select lines having a single period which is at the end:

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

after("."):out rpos(0) more information.

 RTAB (Integer)
Matches from the cursor position to the position specified relative to the right
margin. RTAB fails if the cursor is to the right of the position indicated. RTAB(0),
REM, and REST are equivalent.

To align block comment in a REXX program without continuation:

'pattern',

'"/*", /* Comment at all? */

'rtab(2):line', /* Take text */

'"*/"', /* ending ? */

'out("/*" left(line,68) "*/"', /* write comment */

'or rem:out|' /* Not comment */

See also TAB.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

rtab(3):out :p.This file i

sample for :hp1.pattern:ehp

See :Figref refid=samp.

more informati

1 This demonstrates that the replacement operator in SNOBOL4 is not implemented.

38 CMS Pipelines: pattern

 IBM Internal Use Only SPAN � TAB

 SPAN [(Enumerated)]
Characters are matched from the cursor to the right margin or the first occurrence
of a character not in the argument string, whichever occurs first. Blanks are
spanned when no argument is coded. SPAN fails if the character at the cursor posi-
tion is not in the string of enumerated characters. The converse is BREAK.

To ensure a record contains only characters from a given alphabet:

'pattern',

 '(span(<alphabet>) rpos(0)):out|'

Note: SPAN and RPOS are considered an expression; only when both of them
match is the record copied to the output. SPAN fails when the first character is not
in the alphabet; RPOS fails if SPAN does not reach the right margin.

See also NEXTWORD.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

span("pompously sage"):out sample

mo

 STRing (String)
The string is compared with data from the cursor position onwards. The cursor is
positioned after the string when a match occurs. The keyword is optional when the
expression consists of a single literal or variable reference.

The converse is NOT. See also CASEI.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

string("sample"):out

output("<<<" n:=n+1)

sample<<<1

 TAB (Integer)
The string from the cursor to the position indicated is matched. TAB fails if the
cursor is to the right of the position coded or if the position is beyond the end of the
record.

See also RTAB.

 Atom Reference 39

 TO � TOF IBM Internal Use Only

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

tab(5):out :p.Th

sampl

See :

more

 TO (String)
Matches characters up to (but not including) the argument string. TO fails if the
argument string does not occur to the right of the current cursor position.

See also BREAK, TOCASEI, and WORD.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

to("fi"):out :p.This

See :Figref re

 TOCASEI (String)
Works like TO, but ignores the case of the argument and the record. String and
data bytes are translated to uppercase as per the translate table pointed to by
NUCUPPER before being compared.

See also TO, BREAK, and CASEI.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

tocasei("fi"):out :p.This

See :

 TOF (String)
The string expression is evaluated once before the first record is read on input; the
result is discarded. This atom must be first in the pattern; it cannot be iterated.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

tof(output("At tof:"))

rem:out

At tof:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

40 CMS Pipelines: pattern

 IBM Internal Use Only TOWORD � WORD

 TOWORD [(Enumerated)]
Characters are matched up to the first occurrence of a character not in the argu-
ment string. Blanks are spanned when no argument is coded. TOWORD fails in the
right margin.

This atom is similar to SPAN; the difference is that TOWORD matches the null string
if the character at the cursor position is not in the argument string; SPAN fails in this
case. These two expressions are equivalent:

toword(<string>)

(span(<string>) or if(cursor()¬=length(input())))

See also NEXTWORD.

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

toword(": ")

rem:out

p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

 WORD [(Enumerated)]
Stream to the end of a word delimited by characters in the argument string, or the
end of the input if no such character is met. A blank-delimited word is isolated
when WORD is coded without an argument.

WORD fails in the right margin; it also fails if the character at the cursor position is
in the argument string.

This atom is similar to BREAK, with the difference about the handling of the last
word on a line. These two expressions are identical:

word(<string>)

if(cursor()¬=length(input()))

(notany(<string>) (break(<string>) or rest))

Input File: Pattern: Output File:

:p.This file is a

sample for :hp1.pattern:ehp1..

See :Figref refid=samp. for

more information.

word:out :p.This

sample

See

more

 Atom Reference 41

 IBM Internal Use Only

 String Expressions

A string expression has the syntax and semantics of a REXX expression at the
language level corresponding to VM/System Product Release 6, with these differ-
ences and restrictions:

� Arithmetic is integers only, done with 32 bit precision in 2-complement form.
Hence, there is no divide operator (/); integer divide and integer remainder are
provided. Conversion between string and integer is performed as required.

� Composite operators must be written without white space between the charac-
ters. That is, “= =” is incorrect.

� The null string converts to zero.

� White space means abuttal without a blank. That is, the blank operator acts
like || in REXX; no operator catenates with blank.

� The precedence of the abuttal operator is different than the REXX blank oper-
ator.

� The backslant (code point X'E0') is a national character that can be used in a
name; it cannot be used as a prefix to negate the effect of a relational operator.

Some built-in functions are equivalent to REXX; others are unique to pattern.

 White Space
White space consists of

 � Blanks
 � Comments
 � %include statements
� End-of-line in included files.

 Additional Operators
Two operators are defined that do not exist in REXX.

 Assignment
The colon-equal operator (:=) assigns the right-hand side to the variable defined by
the left-hand side.

Note that colon-equal is an operator; it may occur more than once in an expression
and it can be in the middle of the expression. The result of the assignment oper-
ator is the value assigned to the variable.

null(c:=b:=a)

The precedence of the assignment operator is between plus/minus and abuttal on
the right-hand side; on the left-hand side, the colon-equal operator has the highest
precedence of the binary operators. The prefix operators have higher precedence
than the assignment operator.

42 CMS Pipelines: pattern

 IBM Internal Use Only

Here the record number is counted in the variable “line”. It starts out being the null
string which is the same as zero, and is incremented for each record.

Figure 36. Integer Expression Sample

|pattern output('Record ' line:=line+1 ':') rem:out|

 Separator
The semicolon operator causes evaluation of the expressions on each side, the left-
hand one first. The result is the left-hand side; the right-hand expression is evalu-
ated only for its side effects. For example, to assign a and b the values 1 and 2,
respectively:

null(a:=1; b:=2)

null(a:=1; b:=a+1)

The semicolon looks like a statement separator, but it separates expressions, not
statements (or instructions). The semicolon operator has the lowest precedence of
all operators.

 Operator Precedence
Operator precedence different from REXX is shown in Figure 37 where each half of
a line represents identical expressions.

Figure 37. Operator Precedence

c var2:=var1:=a+b c(var2:=(var1:=(a+b)))

var2:=1+var1:=a+b var2:=(1+(var1:=(a+b)))

a+b c*d (a+b)(c*d)

Built-in Functions as in REXX
The following functions have, within the 32 bit integer precision, syntax and seman-
tics as defined for the REXX functions with the same name. Only eight characters
are used to determine the name, and it may be in any case; “translating” is equiv-
alent to “TRANSLAT.”

ABBREV ABS BITAND BITOR BITXOR B2C CENTER CENTRE COMPARE COPIES C2B C2D C2X

DATE DATATYPE DELSTR DELWORD D2C D2X FIND INDEX INSERT JUSTIFY LASTPOS LEFT

LENGTH MAX MIN OVERLAY POS REVERSE RIGHT SIGN SPACE STORAGE STRIP SUBSTR

SUBWORD TRANSLATe VALUE VERIFY WORD WORDINDEx WORDLENGth WORDPOS WORDS

XRANGE X2C X2D

These functions have a restricted range of arguments; they do give the same result
as does REXX for defined arguments.

TIME Supported options are none, Normal, Civil, Hours, Minutes, and
Seconds. No further resolution is available from Diagnose C, which is
used to obtain the local time of day.

The eight-byte TOD clock value is returned when the argument is TOD.

DATE and TIME are based on the result from Diagnose C where CP has per-
formed the time-zone adjustment. The diagnose is invoked once only for each

 String Expressions 43

 IBM Internal Use Only

evaluation of an expression (atom) where either of the functions is used; perform-
ance may be improved if the value is saved in a variable using ONCE.

Built-in Functions Particular to pattern
These functions have no counterpart in REXX.

CMS - Issue CMS Commands
One string argument is required. The argument is sent to the CMS subcommand
environment for execution. The result is the integer return code.

CURSOR - Return the Cursor Position
One argument is optional. The cursor position before matching the atom where the
function is referenced.

This position is relative to the left margin when no argument is coded. When an
argument is coded, the first character is converted to uppercase and inspected:

A “Absolute”. The absolute storage address (expressed as an integer) is
returned.

R “Remainder”. The cursor position relative to the right margin is returned.

C2F - Format an 8-byte Character String as a Floating Point Number.
The result is a string of length up to 22. The last digit is not exact with very large
exponents.

FLUSH - Flush the Output Buffer into the Pipeline
One argument is optional. Flushes the output buffer in the same way done by the
atom of the same name.

The result is a null string if the record is written successfully; it is “1” if the output
stream is not connected. It is an error if the output stream is not defined. FLUSH
is useful in EOF. The output stream specified remains selected until the next
FLUSH atom is matched or to the next call to the built-in function.

F2C - Convert a Floating-point Number to the Internal Representation
for a Long Floating-point Number.

The result is an 8 byte character string. It is an error if the number cannot be
converted.

INPUT - Return Contents of the Current Input Record
Up to three arguments may be used; none are required. The arguments are similar
to the arguments to SUBSTR.

1. The first position to return. This must be a positive number; the default is the
beginning of the input record.

2. The number of characters to return. This must be a number which is zero or
more. The default is to return up to the end of the input record.

3. A pad character to use when the length requested takes the result beyond the
end of the input record.

44 CMS Pipelines: pattern

 IBM Internal Use Only

OUTBUF - Return Contents of the Output Buffer
Up to three arguments may be used; none are required. The arguments are similar
to the arguments to SUBSTR.

1. The first position to return. This must be a positive number; the default is the
beginning of the output buffer.

2. The number of characters to return. This must be a number which is zero or
more. The default is to return up to and including the last character loaded in
the output buffer so far.

3. A pad character to use when the length requested takes the result beyond the
last character loaded in the output buffer.

OUTPUT - Append to the Output Buffer
Three arguments are optional. If present the second argument must evaluate to a
non-negative number; the output buffer is padded to the length specified if the con-
tents is not already longer than the length specified. The third argument specifies
the pad character to use; the default is a blank. The first argument string is then
appended to the contents output buffer as done by the atom of the same name.
The result is a null string. OUTPUT is useful in EOF.

PIPCMD - Issue a Pipeline Command
One argument is required. The subcommands available are listed in in Pipeline
Subcommands in the User’s Guide (Pipeline Commands in PIPUG LIST3820). The
most useful one is no doubt CALLPIPE. The integer result is the return code from
the command. Note that -7 means that the command is not recognised.

SETDATE - Set the Date and Time to Use
One 16-byte argument is required. The date and time used in the remainder of the
expression are set to the value of the argument string. The argument string is in
the format stored by diagnose 0: mm/dd/yyhh:mm:ss. This function is provided to
test the DATE and TIME functions in repeatable circumstances which tends to give
more confidence that for instance leap years are handled correctly.

SUBCOM - Issue a String to a Subcommand Environment
Two arguments are required. The second argument is addressed to the subcom-
mand environment named by the first argument. The result is the integer return
code from the subcommand environment. The subcommand name is translated to
uppercase and padded with blanks or truncated to eight characters.

REXX Functions not Provided
The following built-in functions are not present:

ADDRESS No default command environment is established. Use CMS or
SUBCOM functions.

ARG Functions are not defined; hence there are no arguments.
CMSFLAG System-dependent.
DATATYPE
DIAG/DIAGRC System-dependent.
ERRORTEXT Implementation dependent.
EXTERNALS System-dependent.

 String Expressions 45

 IBM Internal Use Only

FORMAT Fractional numbers are not implemented.
LINESIZE Implementation-dependent
QUEUED System-dependent.
RANDOM
SOURCELINE Implementation dependent.
SYMBOL Implementation dependent.
TRACE Implementation dependent.
TRUNC Fractional numbers are not implemented.
USERID System-dependent.

46 CMS Pipelines: pattern

 IBM Internal Use Only 199E � 240E

 Messages

199E Excessive symbol table entry size <bytes>

Explanation: A module requested a symbol table too
large.

System Action: The stage terminates with return code
199.

User Response: Contact your system support staff.

System Programmer Response: This is an error in
the program calling the symbol table module.

201E Range missing

Explanation: An equal sign (=) is coded in a pattern
indicating an explicit range of repetitions, but the
decimal data is not found.

System Action: The stage terminates with return code
201.

202E Variable name missing

Explanation: A character is coded indicating that a
variable should be set or referenced, but no more data
follows.

System Action: The stage terminates with return code
202.

203E Pattern missing

Explanation: An expression is opened with a left
parenthesis or an OR, but nothing is met before the
closing right parenthesis.

System Action: The stage terminates with return code
203.

205E Atom parameter missing

Explanation: An atom that requires a parameter is not
followed immediately by a left parenthesis.

System Action: The stage terminates with return code
205.

207E Alternative missing

Explanation: An expression is opened with a left
parenthesis or an OR, but nothing is met before the fol-
lowing OR.

System Action: The stage terminates with return code
207.

208E Cursor does not advance from position
<number> in record <number>

Explanation: A pattern item is matched repeatedly
without advancing the cursor.

System Action: The stage terminates with return code
208.

User Response: Inspect the contents of the record to
see what causes a null string to be matched repeatedly.
The error is easily provoked:

208; literal a|pattern null* rpos(0)

�PIPSNO208E Cursor does not advance from position

�PIPDSP020I Pipeline stage 2 returned with code 2

213E Null string for atom

Explanation: An atom requiring an enumerated list of
characters has a null argument (length zero).

System Action: The stage terminates with return code
213.

221E Invalid data "<token>" in expression

Explanation: The first character is not valid; it must be
a number, a letter, a national character, or one of the
quotes.

System Action: The stage terminates with return code
221.

User Response: A cause can be that a string is
specified with a delimiter character that is not a single
or double quote. A string must be enclosed in single or
double quotes; you cannot use the standard &cms. of
any delimiter character.

System Action: The stage terminates with return code
221.

239I Old-style pattern syntax

Explanation: The pattern is likely to become invalid in
the next edition of CMS Pipelines.

System Action: Message 192 is issued if the
message level is odd. Processing continues.

User Response: Change the pattern to a modern
syntax.

240E Function <name> not supported

Explanation: A pattern expression has an identifier
followed by a left parenthesis, indicating a function call,
but the function requested does not exist.

System Action: The &stg. terminates with &rtrncd. .

 Messages 47

 242E � 262E IBM Internal Use Only

242E Too few arguments; <number> is minimum

Explanation: Too few arguments were present for the
function call.

System Action: The stage terminates with return code
242.

243E Too many arguments; <number> is maximum

Explanation: Too many arguments were present for
the function call.

System Action: The stage terminates with return code
243.

244E Error in call to <function>

Explanation: The function indicates an error in its
invocation.

System Action: The stage terminates with return code
244.

User Response: This is often caused by an argument
that is not within an acceptable range or an overflow in
the computation. This message is issued, for instance,
when the second argument to LEFT is negative.

246E Argument cannot be omitted

Explanation: A function argument is left out, but the
function in question does not support this.

System Action: The stage terminates with return code
246.

247E Unsupported conversion

Explanation: Conversion is attempted between two
formats that are not compatible.

System Action: The stage terminates with return code
247.

248E Conversion error; "<string>" not integer

Explanation: The string shown cannot be converted to
an integer.

System Action: The stage terminates with return code
248.

249E Unexpected comma

Explanation: A comma is met in an expression in the
argument for an atom.

System Action: The stage terminates with return code
249.

250E Syntax error in expression

Explanation: A pair of parentheses are met with
nothing except white space inside.

System Action: The stage terminates with return code
250.

251E Unknown operator "<string>"

Explanation: The string consists of characters that
can be used in an operator, but no operator is known
as shown.

System Action: The stage terminates with return code
251.

252E Operand missing

Explanation: A binary operator is found, but one of its
operands is missing.

System Action: The stage terminates with return code
252.

254E Delimiter missing after string in "<atom type>"
beginning "<string>"

Explanation: A string argument to an atom is not
properly delimited.

System Action: The stage terminates with return code
254.

259E Invalid hex data "<string>"

Explanation: Valid hexadecimal data consists of one
or more characters in the ranges a-f, A-F, and 0-9. An
odd number of characters is padded with a zero on the
left. Blank characters may be present at byte bounda-
ries.

System Action: The stage terminates with return code
259.

260I Doing pattern item <number> near "<string>"

Explanation: Information message issued when
pattern matching stops due to a runtime error.

262E Expression already met for <which> or it is
not first

Explanation: A duplicate TOF or EOF expression is
met or some other atom is met before this atom.

System Action: The stage terminates with return code
262.

User Response: Note that only one of each of the
atoms is allowed, and that they must be first in the
pattern specification.

48 CMS Pipelines: pattern

 IBM Internal Use Only 263E � 277E

263E Atom "<atom>" not supported

Explanation: A left parenthesis is found immediately
after an identifier, but the identifier is not a known atom.

System Action: The stage terminates with return code
263.

User Response: Put a blank character between a var-
iable reference and a parenthesis opening an
expression.

265W Atom argument should be in parentheses

System Action: This is a warning message. Proc-
essing continues with a single string or variable as the
argument to the atom.

User Response: Put the argument to the atom in
parentheses to be compatible with the future.

266E Ampersand no longer allowed to identify a
variable

Explanation: The usage of an ampersand (&) to des-
ignate a variable is no longer supported. The amper-
sand indicates the logical and operator in a string
expression.

System Action: The stage terminates with return code
266.

User Response: Remove the ampersand and enclose
the variable reference in parentheses.

267E Number <number> not whole

Explanation: A function which requires an integer
argument receives an argument which is not integer.

System Action: The stage terminates with return code
267.

268W There should be no blanks between the atom
and the parentheses with the argument

Explanation: Blank characters are found between an
atom name and the parentheses containing its argu-
ment.

System Action: This is a warning about down-level
syntax. Processing continues.

User Response: Abut the parentheses to the atom.
Correct the pattern specification at the first convenient
opportunity.

271E The atom <atom> cannot have parameters

Explanation: An opening parenthesis is met imme-
diately after an atom that does not take parameters.

System Action: The stage terminates with return code
271.

User Response: Insert a blank before a parentheses
used to group a pattern expression.

272E Missing end of comment

Explanation: A comment opened with “/*” did not have
a matching “*/”.

System Action: The stage terminates with return code
272.

User Response: Comments can be nested. Ensure
your comments are properly ended.

273E Incomplete %include statement

Explanation: No ending parenthesis found.

System Action: The stage terminates with return code
273.

User Response: Ensure the ending parenthesis for
the %include statement is on the same line as the
beginning of the statement.

274E File name missing

Explanation: No file name is found for %include.

System Action: The stage terminates with return code
274.

275E %include recursion

Explanation: A file is to be imbedded which is already
in the process of being imbedded.

System Action: The stage terminates with return code
275.

276E %include file not found

Explanation: It is not possible to read from the file
identified in a %include order.

System Action: The stage terminates with return code
276.

277E Too many %include files

Explanation: The information concerning files included
is too big to handle.

System Action: The stage terminates with return code
277.

 Messages 49

 278I IBM Internal Use Only

278I <...> line <number> of file "<file>"

Explanation: Informational message for syntax errors
in included files.

50 CMS Pipelines: pattern

 IBM Internal Use Only pattern syntax

Appendix A. Miscellaneous Reference Information

Formal Syntax of a Pattern
Figure 38 shows the formal syntax of a pattern specification. <s-expr> means a
string expression defined in “String Expressions” on page 42; <delimitedString> is
defined in CMS Pipelines User’s Guide.

Definitions marked /*?*/ are more likely to change or be removed than the ones not
so marked. The comment string is not part of the syntax definition.

A quoted string may contain two adjacent quotes of the type used to delimit the
quoted string. This represents a single quote in the string. Hexadecimal data are
indicated by an x after the ending quote. Strings delimited by other characters than
single and double quote are not scanned for this.

Figure 38. pattern Syntax

<pattern> ::= [TOF(<s-expr>)] [EOF(<s-expr>)] <p-expr>

<p-expr> ::= <list>|<list> OR <p-expr>

<list> ::= <item>|<item> <list>

<item> ::= <a-expr>[<iteration>][:<assignment>]

<a-expr> ::= <atom> | (<p-expr>)

<iteration> ::= ? | * | + | =<number>[-<number>]

<assignment> ::= <variable> | (<s-expr>)

<atom> ::= <identifier>(<s-expr>) |

 <variable> | /*?*/

 <qstring> |

 <delimitedString> /*?*/

<qstring> ::= <qqstr> | <qstr>X

<qqstr> ::= <qstr> | <qstr><qqstr>

<qstr> ::= "<string>" | '<string>'

<variable> ::= <identifier>

<identifier> ::= {_ | <letter>} ffl_ | <letter> | <digit>“...

Notes for SNOBOL4 Gurus
pattern is not an attempt to re-implement SNOBOL4. However, because of the
similarities, the differences might be overlooked, so:

� Pattern expressions are more or less equivalent though pattern has more syn-
tactic sugar and accepts mixed case names. Argument expressions are dif-
ferent.

� Pattern matching is like FULLSCAN on and ANCHORED mode.

� Variable assignment is immediate; conditional assignment to a variable is done
with a subterfuge. To assign v conditionally in <pattern>, code some other var-
iable name (e.g., vi) as an immediate assignment. Then,

 Appendix A. Miscellaneous Reference Information 51

 IBM Internal Use Only

(<pattern>) null(v:=vi)

performs the same function as the conditional assignment.

� Variables assigned a value from the input record through matching (as opposed
to being set in a string expression) lose their contents when the next record is
read. Use the conditional assignment subterfuge shown above to overcome
this.

� There is no replacement statement. Its function can be implemented with
OUTPUT.

� The pattern atom ARB is equivalent to LEN(1) which is not the same as the
SNOBOL4 definition of ARB. SNOBOL4 ARB is coded as ARB* in pattern.

Considerations for Compatibility with the Future
� At the moment, a string not inside parentheses can be delimited by any special

character. However, single and double quotes should be used to delimit
strings; they are mandatory in %include files and in string expressions. Paren-
theses and ampersand are not accepted; REXX operators are discouraged.

� Do not depend on truncation of variable names and function names.

� Do not depend on the uppercasing of variable names.

Compatibility with the Past
� The argument to an atom is in parentheses in general, but a few special cases

could be written in a shorter notation. We are in the process of removing
these; the usage attracts a warning message.

– A number may be coded without the parentheses when the atom is listed
as requiring an integer argument.

Incompatibilities with the Past
� Usage of & to identify a variable parameter to an atom (when not in paren-

theses) is no longer valid. In a string expression it is now the logical and oper-
ator.

� Hex strings are supported. Earlier this was interpreted as the character string
abutted a reference to the variable X.

� A quote-delimited string can contain two quotes to indicate a single quote is
desired. Earlier this was interpreted as two abutted strings.

� Assignment in a string expression can no longer be done with the colon oper-
ator.

� The first 250 characters of variable names are significant. Programs that relied
on truncation after eight characters will fail.

52 CMS Pipelines: pattern

 IBM Internal Use Only

 Appendix B. National Characters

Figure 39 shows the graphics for the national use code points on a 3270.

Figure 39. National Characters

US UK DK Hex What you see on a US terminal:

Æ 7B Number sign.

@ @ Ø 7C At sign.

$ £ Å 5B Dollar sign.

{ { æ C0 Left brace.

¦ ¦ ø 6A Broken bar.

} } å D0 Right brace.

\ \ \ E0 Back slash (backslant).

¢ $ # 4A Cent sign.

! ! ¤ 5A Exclamation sign.

˜ ‾ ü A1 Tilde.

` ` ` 79 Accent grave.

 Appendix B. National Characters 53

 Sample traces IBM Internal Use Only

 Appendix C. Sample Traces

This section contains the regression test output from running a few patterns,
showing how things are matched. Trace data are written to the same stream as
normal output data.

Figure 40 shows a trace of a pattern which does not iterate.

The way an expression is iterated is shown in Figure 42 on page 55. Note that
the parentheses are skipped first time since the asterisk means match zero or more
times.

Figure 41 shows the pipeline run to obtain the trace.

Figure 40. Sample Trace

pipe literal a b c d e f|.trc:pattern ("a b c" rem):out|cons

Begin input record:

a b c d e f

Matching item number 2

Matching STRING cursor at 0 up to 8 bytes data:a b c d

a b c

Matched. Cursor at 5

a b c

Going on to brother.

Matching item number 3

Matching REM cursor at 5 up to 8 bytes data: d e f

Matched. Cursor at 11

 d e f

Setting OUT

a b c d e f

Outputting:

a b c d e f

a b c d e f

Figure 41. Program to Generate Sample Trace

/* Create sample trace */

'PIPE literal a record |',

 'x.trc:pattern',

'(break(" "):out span(" ") out("*") or rem:out)* rpos(0)|',

'> sample trace a'

54 CMS Pipelines: pattern

 IBM Internal Use Only Sample traces

Figure 42 (Page 1 of 2). More Sample Trace

Begin input record:

a record

Matching item number 6

Matching RPOS cursor at 0 up to 8 bytes data:a reco

0

Failure.

Backing up to previous.

Matching item number 2

Matching BREAK cursor at 0 up to 8 bytes data:a reco

Matched. Cursor at 1

a

Setting OUT

a

Going on to brother.

Matching item number 3

Matching SPAN cursor at 1 up to 8 bytes data: recor

Matched. Cursor at 4

Going on to brother.

Matching item number 4

Matching OUTPUT cursor at 4 up to 8 bytes data:record

"*"

Matched. Cursor at 4

Going on to brother.

Matching item number 6

Matching RPOS cursor at 4 up to 8 bytes data:record

0

Failure.

Backing up to previous.

Matching item number 2

Matching BREAK cursor at 4 up to 8 bytes data:record

Matched. Cursor at 10

record

Setting OUT

record

Going on to brother.

Matching item number 3

Matching SPAN cursor at 10 up to 8 bytes data:

Matched. Cursor at 12

Going on to brother.

Matching item number 4

Matching OUTPUT cursor at 12 up to 8 bytes data:

"*"

Matched. Cursor at 12

 Appendix C. Sample Traces 55

 Sample traces IBM Internal Use Only

Figure 42 (Page 2 of 2). More Sample Trace

Going on to brother.

Matching item number 6

Matching RPOS cursor at 12 up to 8 bytes data:

0

Matched. Cursor at 12

Outputting:

a*record*

a*record*

56 CMS Pipelines: pattern

 IBM Internal Use Only

 Index

Special Characters
; 4
:= 4
? 10
* 10
%include 21, 12, 13
+ 10
= 10

A
ABBREV 26
ABBREVCI 26
ABORT 27, 25, 27
AFTER 27, 28
AFTERCI 27, 27, 31
Alternative 11
Alternatives 9
ANOTL

PATTERN 23
ANY 28, 13, 18, 25, 35
ARB 28, 17, 28, 52

SNOBOL4 Pattern Variable 28, 52
Arguments 12
Assignment 5, 8
Assignment operator 18, 4
Assignment to permanent variable 8
AT 28
ATANY 29
ATCASEI 29
Atom 6, 6
Atom types 7

B
BAL 29
Blank operator 5
Blank string 4
BREAK 30, 14, 25, 28, 30, 37, 39, 40, 41

C
CANCEL 30
CASEI 31, 25, 35, 39, 40
Casing of atoms, variables, and functions 13
Comments 13
Compound variables 5
Computed names for variables 6
Computed names of variables 19
Conditionals 7
Conversion 4

Cursor 4
Movement 6

D
DDNAME PATTERN 21
Discard operator 4

E
EOF 31, 16, 20, 22, 30, 36, 44, 45

F
Fail 31, 6, 7, 11, 23
Fence 32, 11, 15, 32
Files with Patterns 12
FIRST 32
FLUSH 32, 15, 16, 17, 22, 33, 36, 44
Flushing the output buffer 6, 16

G
Grouping 10

I
IF 33, 15
If/then/else 15
Incompatibilities 5
Integers in string expressions 4
Iteration 10, 11

L
Left margin 4
LEN 34, 25, 28, 34, 52

M
Margin 4
Match 6, 7
Move cursor 7
MVS 5, 21

N
National use characters 53
Nested pattern expressions 10
Never-fail 8
NEXTWORD 34, 25, 34, 39, 41
NOT 34, 35, 39
NOTANY 35, 28

 Index 57

 IBM Internal Use Only

NOTCASEI 35, 34
NUCON 5
NUCUPPER 5
NULL 35, 15, 19, 20, 33
Null record 6
Null string 4
Null variables 4
Numbers in string expressions 4

O
ONCE 36, 20, 36, 44
Operators 4

Assignment 4
Blank operator 5
Discard 4

OR 9, 10, 13
OUTPUT 36, 16
Output buffer 6, 8, 16
Overview 1

P
Parentheses 10
Parse argument string 21
PATTERN

ANOTL 23
TOKENISE 20

Pattern argument string 12
Pattern file 12
Permanent assignment 8
POS 37, 7, 38
Predicates 7

R
Relational operators 4
REM 37, 7, 11, 37, 38
REST 37, 17, 25, 30, 37, 38
Right margin 4
RPOS 37, 14, 15, 17, 37, 38, 39
RTAB 38, 37, 38, 39

S
Select 15
Separator 19
SPAN 39, 30, 39, 41
Storing patterns in a file 12
STRING 39, 7, 25, 34
String expression 4, 18

Numbers 4
Subsequentation 9

T
TAB 39, 38, 39
Term 10
TO 40, 11, 25, 27, 28, 30, 32, 34, 40
TOCASEI 40, 27, 28, 30, 31, 34, 40
TOF 40, 20, 21, 22, 31, 36
TOKENISE

PATTERN 20
TOLABEL 30
TOWORD 41, 25, 30, 41
Trace 22

U
Unset variables 4
Uppercasing 4, 5

V
VALUE built-in function 5
Variable assignment 7
Variable names 4, 5
Variables 4, 5

W
White space 13
WORD 41, 25, 40, 41

58 CMS Pipelines: pattern

	Table of Contents
	Preface
	What is pattern?
	Why pattern?
	Who is pattern for?
	Publications

	Overview
	Sample REXX Programs and Equivalent Patterns

	pattern Concepts
	Cursor
	Left Margin
	Right Margin

	String Expression
	Variables
	Variable names

	The Output Buffer
	Flushing the Output Buffer

	Atom
	Match and Fail
	Types of Atoms
	Atoms Moving the Cursor
	Conditional Atoms
	Atoms that Never Fail

	Assignment by Pattern Matching
	pattern Expressions
	Subsequentation
	Alternatives
	Grouping with Parentheses
	Term
	Nesting Pattern Expressions

	Iteration
	What Happens when an Atom Fails?

	The Fence
	Distributing Assignment

	Pattern File

	Writing a Pattern Expression
	
	Sample Pattern that Replaces Blanks with an Asterisk

	If-Then-Else
	The Output Buffer
	Getting Data into the Output Buffer
	Getting Data to the PIPE from pattern—Using FLUSH
	Examples of Getting Data into the Output Buffer

	String Expressions
	Assignment Operators in String Expressions
	The Separator
	Computed Variables
	Example of Computed Variables

	Doing Things Before and After the File Is Processed
	%INCLUDE Facility
	Summary of pattern Processing
	Tracing Matching Activity

	Tricks of the Match-making Trade
	Re-scanning the Input Line

	pattern Reference
	
	Abbreviations
	Parameters
	Types of Parameters
	The Most Useful Atoms

	Atom Reference
	ABBREV (String)
	ABBREVCI (String)
	ABORT
	AFTER (String)
	AFTERCI (String)
	ANY (Enumerated)
	ARB
	AT (String)
	ATCASEI (String)
	ATANY (String)
	BAL
	BREAK [(Enumerated)]
	CANCEL (Integer)
	CASEI (String)
	EOF (String)
	FAIL
	FENCE
	FIRST
	FLUSH [(String)]
	IF (Integer)
	LEN (Integer)
	NEXTWord [(Enumerated)]
	NOT (String)
	NOTANY (Enumerated)
	NOTCASEI (String)
	NULL [(String)]
	ONCE (String)
	OUTput (String)
	POS (Integer)
	REM
	REST
	RPOS (Integer)
	RTAB (Integer)
	SPAN [(Enumerated)]
	STRing (String)
	TAB (Integer)
	TO (String)
	TOCASEI (String)
	TOF (String)
	TOWORD [(Enumerated)]
	WORD [(Enumerated)]

	String Expressions
	
	White Space

	Additional Operators
	Assignment
	Separator

	Operator Precedence
	Built-in Functions as in REXX
	Built-in Functions Particular to pattern
	CMS - Issue CMS Commands
	CURSOR - Return the Cursor Position
	C2F - Format an 8-byte Character String as a Floating Point Number.
	FLUSH - Flush the Output Buffer into the Pipeline
	F2C - Convert a Floating-point Number to the Internal Representation for a Long Floating-point Number.
	INPUT - Return Contents of the Current Input Record
	OUTBUF - Return Contents of the Output Buffer
	OUTPUT - Append to the Output Buffer
	PIPCMD - Issue a Pipeline Command
	SETDATE - Set the Date and Time to Use
	SUBCOM - Issue a String to a Subcommand Environment

	REXX Functions not Provided

	Messages
	199E - 239I
	199E
	201E
	202E
	203E
	205E
	207E
	208E
	213E
	221E
	239I

	240E - 251E
	240E
	242E
	243E
	244E
	246E
	247E
	248E
	249E
	250E
	251E

	252E - 268W
	252E
	254E
	259E
	260I
	262E
	263E
	265W
	266E
	267E
	268W

	271E - 278I
	271E
	272E
	273E
	274E
	275E
	276E
	277E
	278I

	Appendix A. Miscellaneous Reference Information
	Formal Syntax of a Pattern
	Notes for SNOBOL4 Gurus
	Considerations for Compatibility with the Future
	Compatibility with the Past
	Incompatibilities with the Past

	Appendix B. National Characters
	Appendix C. Sample Traces
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

