
 1

Pervasive Plumbing

Pipelines for Everyone

 2

 about:rick

● VM since 1982
● Unix since 1985
● Pipelines since 1992
● Linux since 1993
● Knighted “Sir Santa”

 3

● 1973, McIlroy and Thompson create Unix pipes
● 1980, John Hartmann hears about Unix pipes

and (ignoring remarks) produces CMS Pipelines
● 1990, IBM makes Pipelines part of VM/CMS product
● 1990s to 2000s, Rob van der Heij collaborates with

Hartmann, contributes to various VM projects
● “Everyone” wants Pipes “everywhere”
● Early 2000s, Rick Troth has an idea ...

 Some History of Programmatic Plumbing

 4

 Unix Shell and Plumbing

● Shell originally used files to go from stage to stage
● Vision of Douglas McIlroy: do it in memory
● Implemented by Ken Thompson “in one feverish night”

Unix and VM have more in common than most think.

 5

“it’s pronounced yone”

coding with
both hands
and bare feet

 6

● Long-time VMer and HLASM jockey
● Knows crypto methods (“SECURE” option)
● Master Plumber and teacher of Padawans
● Creator of the PTK Data Pump
● Now carries Hartmann’s mantle

 Sir Rob the Plumber

 7

 A Long-Held Dream

CMS Pipelines is like nothing else

Those who’ve used it know

We wish we had something like it on other platforms

Multiple other-than-CMS attempts have succeeded
to some extent, but always with constraints

In this presentation, we discuss an attempt to have
“Hartmann Pipes” on Unix and Unix-like systems
using the operating system and no special requirements

 8

● “I’m working on a project.”
● “What does it do?”

 Explaining it to Friends and Family

one-at-a-time versus “boxed”

multiple streams

 9

● OS/2 Pipelines (OS2PIPE) by Mark VanTassel
circa 1993, later Frans de Bruijn (both IBM)

● Also WINPIPE and AIXPIPE
● PCPIPES (or “PC-PIPES”)

by James Johnson circa 2011

 OS/2, WINPIPE, PC-Pipes

 10

 Pipelines for NetRexx

● Mike Cowlishaw created Rexx,
then he created Netrexx

● Ed Tomlinson created “NetRexx Java Pipes”,
later René Jansen, Jeff Hennick, Marc Remes,
and a cast of thousands. (Well, at least dozens.)

● Blessed by RexxLA … so is it Rexx or Java?

 11

 Craig Edwards Projects

First attempt …
● https://github.com/edwardaux/Pipelines/

Written in Java, then …
● https://github.com/edwardaux/Pipes/

Written in Swift

 12

● Written entirely in Rexx by Willy Jensen
● Heavy use of Rexx ‘Interpret’ statement
● Can call to/from other languages
● Response to IBM withdrawing TSO Pipelines

 RXPIPE for z/OS

 13

 Project Goals

● Native execution (no JVM required)
● No special runtime library (i.e., no .so)
● Use a common compiled language
● Use the host system kernel/nucleus

(stages dispatched alongside other programs)
● Use the most common POSIX interfaces

(broad portability)
● As much like CMS Pipelines as possible

avoid
dependency

hell

 14

 Project Design

● Written in C (but see Rexx, et al, below)
● Stages are individual “main” programs
● Stages are dispatched by the operating system
● Connections are carried over Unix file descriptors

So far it sounds like shell pipes, but it’s not!

 15

 Project Design

● It’s not about C
It’s about portability, and C with POSIX offers that

● Allow stages to be written in any language
● It’s not about Unix or Linux

POSIX is a common standard … it’s ubiquitous
● Work with the OS, not around it

Don’t invent your own dispatcher

 16

● Pipeline Parser (not part of any shell), call it “launcher”
● Optional shell driver (to enable the VAR stage, et al)
● Optional “stage” interfaces for Rexx, Java, Tcl, any
● Stage interconnect is not stdin, stdout, stderr
● Stage interconnect does not clobber stdin, stdout, etc

 Project Design

 17

 POSIX Pipelines: how?

● Use a pair of Thompson/McIlroy pipes (Unix pipes)
● Data flows downstream, just like Hartmann Pipes

fdf – forward file descriptor
● Control flows upstream

fdr – reverse file descriptor
● Record oriented flow
● A record can be ‘peeked’ without being consumed

 18

 Same Primitives for C as for CMS Rexx

/* sip on input */
rc = xfl_peekto(pi,buffer,buflen);

/* send it downstream */
rc = xfl_output(po,buffer,buflen);

/* consume input after output */
rc = xfl_readto(pi,NULL,0);

 19

 A Pair of Thompson/McIlroy Pipes

typedef struct PIPECONN {

 int fdf; /* FD forward */

 int fdr; /* FD reverse */

 int flag; /* which side, etc */

 …

 } PIPECONN;

 20

 A Pair of Thompson/McIlroy Pipes

● Producer feeds the forward FD (data, stats)
and reads command/control from the reverse FD

● Consumer feeds the reverse FD (control)
and reads data/metadata from the forward FD

 21

 A Plumbing Protocol

● consumer sends "STAT":
producer sends number of bytes available

● consumer sends "PEEK":
producer sends the data

● consumer sends "NEXT":
producer advances to next record

 22

 What’s in a Name?

● If we call it Pipelines some might expect it to be
closer to CMS Pipelines than it actually is.

● If we call it Pipelines, Unix people would think
“shell pipes” and then “so what?”.

● Maybe call it Ductwork, real example, controlled flow.
● Maybe call it Plenum, but now too many options.

 23

From: Nancy Foley <nfoley@us.ibm.com>

Subject: Prefix Request

Date: Wed, 26 Jul 2023 14:37:20 +0000

Prefix XFL* has been assigned to you and your product.

 Project needs a “Prefix”

 24

 Inherited Environment

PIPECONN='*.INPUT:4,5 *.OUTPUT:7,10'

PIPEPATH=/my/stages:/usr/libexec/xfl

PIPEOPT_various=whatever

● File descriptors are passed via $PIPECONN

● Stages are found via $PIPEPATH, not via $PATH

● Default search is /usr/libexec/xfl
● Options passed via environment variables as needed

 25

 Bypass Shell Plumbing

● Q: How to avoid the shell interpreting a pipeline?
● A: Simple ... quote it.

pipe ' strliteral /hello/ | console '

The shell does not interpret a quoted pipeline.

 26

 Beware SIGPIPE

● Writing to a standard Unix pipe with
no listener on the other end results in error EPIPE.

● By default it also precipitates a SIGPIPE,
which kills the process (the stage) if not handled.

signal(SIGPIPE,SIG_IGN);

 27

 XMITMSG and APPLMSG

● We use the “xmitmsgx” library
which is similar to APPLMSG and ‘XMITMSG’.

● Initial message repository stolen from CMS Pipelines.
● Works!

 28

● On CMS:

'peekto'

'output'

'readto'

● In POSIX:

xlf("peekto",,)

xlf("output",,)

xlf("readto",,)

 Other Languages: Rexx

 29

call 'XFLPEEK' using sn buffer buflen returning Result.
 …

call 'XFLOUT' using sn buffer buflen returning Result.
 …

call 'XFLREAD' using sn buffer buflen returning Result.
 …

Loop as needed

 Other Languages: COBOL

 30

● Why not have a ‘cp’ stage?

(credit Sir Rob the Plumber)

sudo pipe ' cp q v stor | console '

sudo pipe ' strliteral /q userid/ | cp | console '

 CP Stage: more than a hat-tip

 31

 32

 Concerns about Efficiency

 “premature optimization is the root of all evil”
 – Knuth

● Go with the “heavy” to get it going. Improve as you can.
● Remember: your time costs more than CPU time.
● Keep everything in perspective.

 33

This implementation needs:
● A pacing strategy (in the dispatcher) allowing a stream

to be split at one point, filtered and altered, then merged
by a join with the record order preserved.

● A set/get interface for variables in various languages.
e.g., if the ‘var’ stage runs as a sub-process,
how can it set variables in the Rexx calling process?

 Concerns about Accuracy

 34

● Current PIPECONN struct array is unclear;
presumes primary, secondary, etc

● Stages should start with a PIPESTAGE struct

● Parsing logic is in “pipe.c”;
needs to move to “xfllib.c”

● Few stages implemented so far – SMOP

 Open Issues

 35

 MEMO LIFEBOAT

● The VMSHARE conference had “MEMO LIFEBOAT”
for all those times IBM tried to kill VM.

● POSIX Pipelines is a lifeboat item:
If your organization is moving away from z/VM
then you can still have “robust” plumbing!

 36

 Hello, World!

$ pipe --version

XFLPIP086I POSIX Pipelines (XFL) version 1.0.0

http://trothtech.us/pipelines/

 37

● POSIX Pipelines official site
http://trothtech.us/pipelines/

● POSIX Pipelines as “Ductwork” project
https://github.com/trothr/ductwork/

● POSIX Pipelines as “Plenum” project
https://gitlab.com/sir.santa/plenum/

 Links

 38

● Pipes for NetRexx and Java
https://www.rexxla.org/presentations/2012/NJPipes.pdf

● RXPIPE for z/OS
https://www.rexxla.org/presentations/2024/RxPipe.pdf

● Swift implementation of Pipelines (Craig Edwards)
https://github.com/edwardaux/Pipes/

● Pipes for Java (Craig Edwards)
https://github.com/edwardaux/Pipelines/

 Links

 39

● The pipe connector: commands go upstream, data downstream
● Associate each end of the connector with a stage
● Re-use stage struct of labeled stages
● Per-stage: close those unused and dangling file descriptors

● Set $PIPECONN and placing it into the environment

● Find stages in /usr/libexec/xfl or via $PIPEPATH

http://trothtech.us/pipelines/pervasive-vmws-2024.pptx

 Summary

 40

Thank You!

Rick Troth

<rick@trothtech.us>

http://www.trothtech.us/pipelines/

 1

Pervasive Plumbing

Pipelines for Everyone

NOTE:
We are talking about implementations of
“flow programming”. We are not talking about
such things as CI/CD pipelines.

 2

 about:rick

● VM since 1982
● Unix since 1985
● Pipelines since 1992
● Linux since 1993
● Knighted “Sir Santa”

I wondered where “Sir Santa” came from, and it was
Chuck Morse who said “because of the gifts”. (CMS
Gopher, Webshare)

Like me, Tux also hails from Texas A&M.
Larry Ewing, then an A&M comp sci student,
created Tux in 1996.

 3

● 1973, McIlroy and Thompson create Unix pipes
● 1980, John Hartmann hears about Unix pipes

and (ignoring remarks) produces CMS Pipelines
● 1990, IBM makes Pipelines part of VM/CMS product
● 1990s to 2000s, Rob van der Heij collaborates with

Hartmann, contributes to various VM projects
● “Everyone” wants Pipes “everywhere”
● Early 2000s, Rick Troth has an idea ...

 Some History of Programmatic Plumbing

Looking back over old files, I found this …

Nov 30 2008 ductwork.txt

 … but I was working on it before then.

 4

 Unix Shell and Plumbing

● Shell originally used files to go from stage to stage
● Vision of Douglas McIlroy: do it in memory
● Implemented by Ken Thompson “in one feverish night”

Unix and VM have more in common than most think.

McIlroy recognized that they could do better than
holding the traffic in files. When Thompson coded-
up the Unix pipe() function, the team went to tears
and started feverishly writing filters.

 … enthusiasm on the level of many VM events …

“The next day saw an unforgettable
orgy of one-liners as everybody
joined in the excitement of plumbing.”

But … of course … with Unix and the shell it was all
just unstructured byte streams.

Doug and Ken turned on the tap for the first time.

 5

“it’s pronounced yone”

coding with
both hands
and bare feet

John Hartmann, of IBM Denmark, the author
of CMS Pipelines, has described its origin:

“I passed through Peter Capek's office one day.
 We can't really remember when it was - probably
sometime late '80 or early '81. He had a box of the
Bell Systems Technical Journal issue on UNIX4
under his table. I saw him slip a copy to someone,
so I said gimme! Having read it (and ignoring their
remarks about structured data), I ran off shouting
from the rooftops and then began coding with both
hands and my bare feet."

 6

● Long-time VMer and HLASM jockey
● Knows crypto methods (“SECURE” option)
● Master Plumber and teacher of Padawans
● Creator of the PTK Data Pump
● Now carries Hartmann’s mantle

 Sir Rob the Plumber

I wrote a ‘wget’ and a ‘curl’ using TCPCLIENT.
Asked Rob how to upgrade to do SSL/TLS.
“Just add ‘SECURE’ to TCPCLIENT”.
Wow!

 7

 A Long-Held Dream

CMS Pipelines is like nothing else

Those who’ve used it know

We wish we had something like it on other platforms

Multiple other-than-CMS attempts have succeeded
to some extent, but always with constraints

In this presentation, we discuss an attempt to have
“Hartmann Pipes” on Unix and Unix-like systems
using the operating system and no special requirements

Problem statement:
We want something that works like CMS Pipelines
in environments where we don’t have CMS
Pipelines (or even, for that matter, have CMS).

We want this without “dependency hell”.

I chose this particular LibreOffice stock layout
because the stripe along the left side of each slide
looks sorta like DNA. CMS Pipelines has become
part of our DNA In the VM community.

Melinda Varian called Pipes “the most significant
addition to CMS since REXX”.

What about AT&T Streams?
https://en.wikipedia.org/wiki/STREAMS

 8

● “I’m working on a project.”
● “What does it do?”

 Explaining it to Friends and Family

one-at-a-time versus “boxed”

multiple streams

The bakery makes donuts. In Unix style, the donuts
come out one at a time. But customers typically
want them boxed, quantized, in blocks of more than
one.

The bakery also makes pretzels. Those come out
along a different stream.

The bakery makes cupcakes too, and that’s a third
stream.

 9

● OS/2 Pipelines (OS2PIPE) by Mark VanTassel
circa 1993, later Frans de Bruijn (both IBM)

● Also WINPIPE and AIXPIPE
● PCPIPES (or “PC-PIPES”)

by James Johnson circa 2011

 OS/2, WINPIPE, PC-Pipes

OS/2 Pipelines (OS2PIPE) version 0.99 for OS/2
by Mark VanTassel circa 1993, later Frans de Bruijn
(both IBM), possibly available from the OS2TOOLS
repository. very specific to OS/2, meaning
(evidently) not portable. But …

Version 1.00.52 for Windows (WINPIPE) and AIX
(AIXPIPE), IBM internal and rather old.

Contributions from Ronald van der Laan (BUFFER,
COLLATE, LOOKUP, SORT).

"PCPIPES" or "PC-PIPES" by James Johnson circa
2011, more complete but much slower.

 10

 Pipelines for NetRexx

● Mike Cowlishaw created Rexx,
then he created Netrexx

● Ed Tomlinson created “NetRexx Java Pipes”,
later René Jansen, Jeff Hennick, Marc Remes,
and a cast of thousands. (Well, at least dozens.)

● Blessed by RexxLA … so is it Rexx or Java?

NetRexx Java Pipes, call it “Pipelines for NetRexx”,
has now reached a high level of development.
The filename extension remains “.nrx”.

Seriously, it’s a serious implementation.
It’s just stuck in Java land.

Some 200 included stages

 11

 Craig Edwards Projects

First attempt …
● https://github.com/edwardaux/Pipelines/

Written in Java, then …
● https://github.com/edwardaux/Pipes/

Written in Swift

 12

● Written entirely in Rexx by Willy Jensen
● Heavy use of Rexx ‘Interpret’ statement
● Can call to/from other languages
● Response to IBM withdrawing TSO Pipelines

 RXPIPE for z/OS

As of this writing,
I don’t know that IBM is withdrawing TSO
Pipelines.
I do know that they have (again) rejected the
request to include TSO Pipelines with z/OS (MVS).

MVS customers are not happy.

 13

 Project Goals

● Native execution (no JVM required)
● No special runtime library (i.e., no .so)
● Use a common compiled language
● Use the host system kernel/nucleus

(stages dispatched alongside other programs)
● Use the most common POSIX interfaces

(broad portability)
● As much like CMS Pipelines as possible

avoid
dependency

hell

As much like CMS Pipelines as possible, keeping in
mind that the underlying system is *not* VM/CMS.

Consider Amdahl’s UTS: it was truly Unix and truly
mainframe, no compromising either. So this project
is truly multi-stream, record-oriented, flow-controlled
and yet truly Unix/Linux/POSIX.

And this is *not* a shell extension.

AVOID DEPENDENCY HELL

 14

 Project Design

● Written in C (but see Rexx, et al, below)
● Stages are individual “main” programs
● Stages are dispatched by the operating system
● Connections are carried over Unix file descriptors

So far it sounds like shell pipes, but it’s not!

Shell pipes are great, but they’re entirely un-
structured. Bytes flow without boundaries or control
from one program to the next. All plumbing is
initiated as an ordinary command.

POSIX Pipelines stages are not commands, so they
are not found under $PATH search. There is a
counterpart $PIPEPATH search which you can set.

Why C?
If we can write stages in C, then we can write
stages in Rexx, Java, Python, Tcl, Go, …

 15

 Project Design

● It’s not about C
It’s about portability, and C with POSIX offers that

● Allow stages to be written in any language
● It’s not about Unix or Linux

POSIX is a common standard … it’s ubiquitous
● Work with the OS, not around it

Don’t invent your own dispatcher

The project builds and runs on Linux, of course, but
also FreeBSD and “Solaris” (as OpenIndiana).

 16

● Pipeline Parser (not part of any shell), call it “launcher”
● Optional shell driver (to enable the VAR stage, et al)
● Optional “stage” interfaces for Rexx, Java, Tcl, any
● Stage interconnect is not stdin, stdout, stderr
● Stage interconnect does not clobber stdin, stdout, etc

 Project Design

Parsing needs yet to be separated from the
launcher so that we can share that operation with
ADDPIPE and CALLPIPE.

 17

 POSIX Pipelines: how?

● Use a pair of Thompson/McIlroy pipes (Unix pipes)
● Data flows downstream, just like Hartmann Pipes

fdf – forward file descriptor
● Control flows upstream

fdr – reverse file descriptor
● Record oriented flow
● A record can be ‘peeked’ without being consumed

This invention is on the Easy IP block chain.

For clarity,
“downstream” is the traditional
direction of flow of data in any pipeline.
That is, from the producer to the consumer.

The addition in this implementation is an
“upstream” control channel, allowing the consumer
to hold-up the producer, to examine a record before
consuming it, and related capability.

 18

 Same Primitives for C as for CMS Rexx

/* sip on input */
rc = xfl_peekto(pi,buffer,buflen);

/* send it downstream */
rc = xfl_output(po,buffer,buflen);

/* consume input after output */
rc = xfl_readto(pi,NULL,0);

peekto, output, and readto follow familiar operations
used in Rexx-based stages. The order shown
supports the classic “don’t delay the record”.

Arguments are similar to Unix read() and
write() primitives. The “pi” and “po” arguments
are pointers to PIPECONN structs for input and
output.

This implementation is all about the stages.
The launcher establishes connectors, sets-up the
stages, and then spawns the processes.

 19

 A Pair of Thompson/McIlroy Pipes

typedef struct PIPECONN {

 int fdf; /* FD forward */

 int fdr; /* FD reverse */

 int flag; /* which side, etc */

 …

 } PIPECONN;

FDF is data,
read by the consumer, written by the producer

FDR is control,
written by the consumer, read by the producer

 20

 A Pair of Thompson/McIlroy Pipes

● Producer feeds the forward FD (data, stats)
and reads command/control from the reverse FD

● Consumer feeds the reverse FD (control)
and reads data/metadata from the forward FD

 21

 A Plumbing Protocol

● consumer sends "STAT":
producer sends number of bytes available

● consumer sends "PEEK":
producer sends the data

● consumer sends "NEXT":
producer advances to next record

“commands” (upstream) are always exactly 4 bytes

Should data (downstream) be prefixed with a tag?
Maybe later as we get experience with this.

The data consists of records, not necessarily
strings, bytes without formatting significance.
Records are equally suited to textual content or
binary data flows.

 22

 What’s in a Name?

● If we call it Pipelines some might expect it to be
closer to CMS Pipelines than it actually is.

● If we call it Pipelines, Unix people would think
“shell pipes” and then “so what?”.

● Maybe call it Ductwork, real example, controlled flow.
● Maybe call it Plenum, but now too many options.

https://github.com/trothr/ductwork/

https://gitlab.com/sir.santa/plenum/

Dave Jones suggested “conduit”.
We are planning to call the project Conduit/XFL
in new and future developments.

 23

From: Nancy Foley <nfoley@us.ibm.com>

Subject: Prefix Request

Date: Wed, 26 Jul 2023 14:37:20 +0000

Prefix XFL* has been assigned to you and your product.

 Project needs a “Prefix”

Voltage Security (former employer) has a z/OS
product. Since they’re in the IBM ecosystem, Phil
Smith tried to get “VSI” for “Voltage Security, Inc”.
But it was taken. So they got “VSH”.

I had a few three-letter prefix tags in mind, and
asked for help from Alan Altmark. He graciously took
the task of finding the right group within IBM. Then I
got this note from Nancy Foley, then with the
“element” team.

 24

 Inherited Environment

PIPECONN='*.INPUT:4,5 *.OUTPUT:7,10'

PIPEPATH=/my/stages:/usr/libexec/xfl

PIPEOPT_various=whatever

● File descriptors are passed via $PIPECONN

● Stages are found via $PIPEPATH, not via $PATH

● Default search is /usr/libexec/xfl
● Options passed via environment variables as needed

Note that PIPECONN could be leveraged for
a pure Java implementation of stage support,
perhaps also of the launcher. (Can Java do “file
descriptors”?)

The syntax is obviously taken from ‘ADDPIPE’ and
‘CALLPIPE’ connectors in CMS Pipelines.

 25

 Bypass Shell Plumbing

● Q: How to avoid the shell interpreting a pipeline?
● A: Simple ... quote it.

pipe ' strliteral /hello/ | console '

The shell does not interpret a quoted pipeline.

In the example, strliteral and console are invoked by
the pipeline launcher, not by the shell. They’re not
found in $PATH processing. The connection
between them is not an ordinary Unix pipeline.

 26

 Beware SIGPIPE

● Writing to a standard Unix pipe with
no listener on the other end results in error EPIPE.

● By default it also precipitates a SIGPIPE,
which kills the process (the stage) if not handled.

signal(SIGPIPE,SIG_IGN);

Not using this sooner cost a lot of development
time. The library now handles this when creating
connectors.

In addition, the launcher closes file descriptors used
by a stage after spawning that stage so that there
are no dangling connections.

 27

 XMITMSG and APPLMSG

● We use the “xmitmsgx” library
which is similar to APPLMSG and ‘XMITMSG’.

● Initial message repository stolen from CMS Pipelines.
● Works!

When the Internet was young, before we had the
world-wide web, there was the Internet Gopher.
I wrote a gopher client and server for VM.
The community took to it, but pressured me
to use a message repository. “A what?”

I fell in love with this utility.
I was *shocked* to discover that MVS
does not have a counterpart.

I was not satisfied with the internationalization (i18n)
and localization (l10n) systems available for Unix,
so I wrote one.

https://github.com/trothr/xmitmsgx/

 28

● On CMS:

'peekto'

'output'

'readto'

● In POSIX:

xlf("peekto",,)

xlf("output",,)

xlf("readto",,)

 Other Languages: Rexx

CMS Rexx and CMS Pipelines have developed a
symbiotic relationship. Some people have difficulty
conceiving of Rexx apart from Pipes and vice versa.

 29

call 'XFLPEEK' using sn buffer buflen returning Result.
 …

call 'XFLOUT' using sn buffer buflen returning Result.
 …

call 'XFLREAD' using sn buffer buflen returning Result.
 …

Loop as needed

 Other Languages: COBOL

ANY LANGUAGE

I had hoped to demonstrate Java (JNI), Tcl, and
Python, but they were not ready by press time.

 30

● Why not have a ‘cp’ stage?

(credit Sir Rob the Plumber)

sudo pipe ' cp q v stor | console '

sudo pipe ' strliteral /q userid/ | cp | console '

 CP Stage: more than a hat-tip

So … there’s no CMS stage, but we *might*
be able to fudge that using ADJUNCT processor
running CMS.

 31

demo time

various sample pipelines, incl simple multi-stream
z/Linux for ‘cp’ stage demo
Rexx stage demo
Java stage demo
COBOL stage demo

pipe ' strliteral /hello/ | console '
pipe ' < testfile | console '
pipe ' < testfile | rxstage | console '
pipe ' < testfile | cobstage | console '

sudo pipe ' cp Q V STOR | console '
sudo pipe ' strliteral /Q USERID/ | cp | console '

 32

 Concerns about Efficiency

 “premature optimization is the root of all evil”
 – Knuth

● Go with the “heavy” to get it going. Improve as you can.
● Remember: your time costs more than CPU time.
● Keep everything in perspective.

The full text of what Dr. Knuth said is, “We should
forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil.
Yet we should not pass up our opportunities in that
critical 3%”

https://en.wikipedia.org/wiki/Program_optimization

Every time over the past couple decades that I have
mentioned this to a seasoned VMer, the inefficiency
of the POSIX process model makes them cringe.

Ducati will come in time.
Vintage bicycle today … at least rolls.

 33

This implementation needs:
● A pacing strategy (in the dispatcher) allowing a stream

to be split at one point, filtered and altered, then merged
by a join with the record order preserved.

● A set/get interface for variables in various languages.
e.g., if the ‘var’ stage runs as a sub-process,
how can it set variables in the Rexx calling process?

 Concerns about Accuracy

 34

● Current PIPECONN struct array is unclear;
presumes primary, secondary, etc

● Stages should start with a PIPESTAGE struct

● Parsing logic is in “pipe.c”;
needs to move to “xfllib.c”

● Few stages implemented so far – SMOP

 Open Issues

SPEC is the most obvious omission.
Note that spec.nrx is more than twice as large
as any other stage in Pipelines for NetRexx.

Current PIPECONN is returned to each stage as an
unordered list. Difficult at present to identify (e.g.)
secondary input if there is no primary input.

Launcher calls a function from the library which
simply needs to be improved, such will utilize the
PIPESTAGE struct rather than just PIPECONN.

 35

 MEMO LIFEBOAT

● The VMSHARE conference had “MEMO LIFEBOAT”
for all those times IBM tried to kill VM.

● POSIX Pipelines is a lifeboat item:
If your organization is moving away from z/VM
then you can still have “robust” plumbing!

I originally said “he-man plumbing”,
but was told that it is not politically correct.

 36

 Hello, World!

$ pipe --version

XFLPIP086I POSIX Pipelines (XFL) version 1.0.0

http://trothtech.us/pipelines/

http://trothtech.us/pipelines/
is IPv6 so if you cannot reach it then try
http://www.casita.net/pipelines/

HTTPS verification is mixed but all deliverables are
signed using PGP with key 0x96af6544edf138d9

 37

● POSIX Pipelines official site
http://trothtech.us/pipelines/

● POSIX Pipelines as “Ductwork” project
https://github.com/trothr/ductwork/

● POSIX Pipelines as “Plenum” project
https://gitlab.com/sir.santa/plenum/

 Links

 38

● Pipes for NetRexx and Java
https://www.rexxla.org/presentations/2012/NJPipes.pdf

● RXPIPE for z/OS
https://www.rexxla.org/presentations/2024/RxPipe.pdf

● Swift implementation of Pipelines (Craig Edwards)
https://github.com/edwardaux/Pipes/

● Pipes for Java (Craig Edwards)
https://github.com/edwardaux/Pipelines/

 Links

 39

● The pipe connector: commands go upstream, data downstream
● Associate each end of the connector with a stage
● Re-use stage struct of labeled stages
● Per-stage: close those unused and dangling file descriptors

● Set $PIPECONN and placing it into the environment

● Find stages in /usr/libexec/xfl or via $PIPEPATH

http://trothtech.us/pipelines/pervasive-vmws-2024.pptx

 Summary

 40

Thank You!

Rick Troth

<rick@trothtech.us>

http://www.trothtech.us/pipelines/

Maybe the lifeboat is Noah’s Ark.

Thanks to McIlroy and Thompson for Unix pipes.
Thanks to John Hartmann for CMS Pipelines.
Thanks to Rob van der Heij for keeping it going.
Thanks to Susan Troth for support and focus.
Thanks to Martin Troth for being a booth babe.
Thanks to God for giving me

such wonderful family and friends.

